Skip to main content

Spatial Autocorrelation and Spatial Filtering

  • Reference work entry
  • First Online:
Handbook of Regional Science

Abstract

This chapter provides an introductory discussion of spatial autocorrelation (SA), which refers to correlation existing and observed in geospatial data, and which characterizes data values that are not independent, but rather are tied together in overlapping subsets within a given geographic landscape. This chapter summarizes the various interpretations of SA, one being map pattern. SA can be quantified in a number of different ways, too, one being with the Moran Coefficient. Spatial filtering is a statistical method whose goal is to obtain enhanced and robust results in a spatial data analysis by decomposing a spatial variable into trend, a spatially structured random component (i.e., spatial stochastic signal), and random noise. Its aim is to separate spatially structured random components from both trend and random noise, and, consequently, leads statistical modeling to sounder statistical inference and useful visualization. This separation procedure can involve eigenfunctions of the matrix version of the numerator of the Moran Coefficient. This chapter summarizes the eigenvector spatial filtering (ESF) conceptual material, and presents the computer code for implementing ESF in R, Matlab, MINITAB, FORTRAN, and SAS. Next, it demonstrates that eigenvector spatial filter estimators are unbiased, efficient, and consistent. Finally, it summarizes an ESF empirical example application, and the extension of ESF to spatial interaction modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J Roy Stat Soc Series B 36(2):192–225

    Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10(4):317–344

    Article  Google Scholar 

  • Chun Y, Griffith DA (2009) Eigenvector selection with stepwise regression techniques to construct spatial filters. Paper presented at the annual association of american geographers meeting, Las Vegas, NV, 25 March

    Google Scholar 

  • Chun Y, Griffith DA (2011) Modeling network autocorrelation in space-time migration flow data: an eigenvector spatial filtering approach. Ann Assoc Am Geogr 101(3):523–536

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Cordy C, Griffith DA (1993) Efficiency of least squares estimators in the presence of spatial autocorrelation. Commun Stat Series B 22:1161–1179

    Google Scholar 

  • de Jong P, Sprenger C, van Veen F (1984) On extreme values of Moran’s I and Geary’s c. Geogr Anal 16:17–24

    Article  Google Scholar 

  • Fischer M, Griffith DA (2008) Modeling spatial autocorrelation in spatial interaction data: a comparison of spatial econometric and spatial filtering specifications. J Reg Sci 48:969–989

    Article  Google Scholar 

  • Flowerdew R, Aitkin M (1982) A method of fitting the gravity model based on the Poisson distribution. J Reg Sci 22:191–202

    Article  Google Scholar 

  • Getis A (1990) Screening for spatial dependence in regression analysis. Pap Reg Sci Assoc 69:69–81

    Article  Google Scholar 

  • Getis A (2010) Spatial autocorrelation. In: Fischer M, Getis A (eds) Handbook of applied spatial analysis. Springer, New York, pp 255–278

    Chapter  Google Scholar 

  • Getis A, Griffith DA (2002) Comparative spatial filtering in regression analysis. Geogr Anal 34(2):130–140

    Google Scholar 

  • Griffith DA (1992) What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics. l’Espace Géographique 21:265–280

    Article  Google Scholar 

  • Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl 321:95–112

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understating through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA (2004) A spatial filtering specification for the autologistic model. Environ Plann A 36:1791–1811

    Article  Google Scholar 

  • Griffith DA (2010) The Moran coefficient for non-normal data. J Stat Plann Infer 140:2980–2990

    Article  Google Scholar 

  • Griffith DA (2011) Visualizing analytical spatial autocorrelation components latent in spatial interaction data: an eigenvector spatial filter approach. Comput, Environ Urban Syst 35:140–149

    Article  Google Scholar 

  • Haining R (1991) Bivariate correlation with spatial data. Geogr Anal 23:210–227

    Article  Google Scholar 

  • LeSage J, Pace R (2008) Spatial econometric modelling of origin–destination flows. J Reg Sci 48:941–967

    Article  Google Scholar 

  • Pace K, LeSage J, Zhu S (2011) Interpretation and computation of estimates from regression models using spatial filtering. Paper presented to the Vth world conference of the spatial econometrics association, Toulouse, FR, 6–8 July

    Google Scholar 

  • Patuelli R, Griffith DA, Tiefelsdorf M, Nijkamp P (2011) Spatial filtering and eigenvector stability: space-time model for German unemployment data. Int Reg Sci Rev 34:235–280

    Google Scholar 

  • Portnoy S (1984) Asymptotic behavior of M estimators of p regression parameters when p2/n is large: I. consistency. Ann Stat 12:1298–1309

    Article  Google Scholar 

  • Tiefelsdorf M, Boots BN (1995) The exact distribution of Moran’s I. Environ Plann A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semi-parametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plann A 39:1193–1221

    Article  Google Scholar 

  • Tobler W (1969) A computer movie simulating urban growth in the Detroit region. Paper prepared for the meeting of the international geographical union, commission on quantitative methods, Ann Arbor, Michigan, August; published in 1970, Economic Geography 46(2) 234–240

    Google Scholar 

  • Tobler W (1975) Linear operators applied to areal data. In: Davis J, McCullagh M (eds) Display and analysis of spatial data. Wiley, New York, pp 14–37

    Google Scholar 

  • Wilson A (1967) A statistical theory of spatial distribution models. Transport Res 1:253–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Griffith .

Editor information

Editors and Affiliations

Appendix A

Appendix A

The relationship between the MC and a squared product moment correlation coefficient (r2).

MC can be derived as a linear regression solution:

From OLS theory: b = (X T X)−1 X T Y

  1. (i)

    Convert the attribute variable in question to z-scores

  2. (ii)

    Let X = z Y and Y = Cz Y

  3. (iii)

    Regress Cz Y on z Y, with a no-intercept option

  4. (iv)

    Let X = 1 and Y = C1

  5. (v)

    Regress C1 on 1, with a no-intercept option

  6. (vi)

    MC = bnumerator/bdenominator

This relationship relates directly to the Moran scatterplot, conveying why it is a useful visualization of spatial autocorrelation.

Next, let MC = (n /1 T C1) z T Cz/(n−1) and rewrite vector z as the following bivariate regression model specification: z = a1 + bCZ + e, where e is an n-by-1 vector of residuals. Then

$$ \mathrm{ b}=\frac{{{{\mathbf{ z}}^{\mathrm{ T}}}\mathbf{ Cz}}}{{{{\mathbf{ z}}^{\mathrm{ T}}}{{\mathbf{ C}}^2}\mathbf{ z}}}=\frac{{{{\mathrm{ s}}_{\mathrm{ z}}}}}{{{{\mathrm{ s}}_{\mathrm{ Cz}}}}}\mathrm{ r}=\frac{{\sqrt{1}}}{{{{\mathrm{ s}}_{\mathrm{ Cz}}}}}\mathrm{ r} $$
$$ \frac{\mathrm{ M}\mathrm{ C}}{{\mathrm{ M}{{\mathrm{ C}}_1}}}\frac{{\mathrm{ n}{\lambda_1}}}{{{{\mathbf{ 1}}^{\mathrm{ T}}}\mathbf{ C}\mathbf{ 1}}}\frac{{{{\mathbf{ 1}}^{\mathrm{ T}}}\mathbf{ C}\mathbf{ 1}}}{\mathrm{ n}}\frac{{\mathrm{ n}-1}}{{{{\mathbf{ z}}^{\mathrm{ T}}}{{\mathbf{ C}}^2}\mathbf{ z}}}=\frac{1}{{\sqrt{{\frac{{{{\mathbf{ z}}^{\mathrm{ T}}}\mathbf{ C}(\mathbf{ I}-\mathbf{ 1}{{\mathbf{ 1}}^{\mathrm{ T}}}/\mathrm{ n})\mathbf{ C}\mathbf{ z}}}{{\mathrm{ n}-1}}}}}}\mathrm{ r} $$
$$ {{\left( {\frac{\mathrm{ M}\mathrm{ C}}{{\mathrm{ M}{{\mathrm{ C}}_1}}}} \right)}^2}\lambda_1^2\frac{{{{{(\mathrm{ n}-1)}}^2}}}{{{{{\left( {{{\mathbf{ z}}^{\mathrm{ T}}}{{\mathbf{ C}}^2}\mathbf{ z}} \right)}}^2}}}=\frac{{\mathrm{ n}-1}}{{{{\mathbf{ z}}^{\mathrm{ T}}}\mathbf{ C}(\mathbf{ I}-\mathbf{ 1}{{\mathbf{ 1}}^{\mathrm{ T}}}/\mathrm{ n})\mathbf{ C}\mathbf{ z}}}{{\mathrm{ r}}^2} $$
$$ {{\mathrm{ r}}^2}={{\left( {\frac{\mathrm{ M}\mathrm{ C}}{{\mathrm{ M}{{\mathrm{ C}}_1}}}} \right)}^2}\lambda_1^2(\mathrm{ n}-1)\frac{{{{\mathbf{ z}}^{\mathrm{ T}}}\mathbf{ C}(\mathbf{ I}-\mathbf{ 1}{{\mathbf{ 1}}^{\mathrm{ T}}}/\mathrm{ n})\mathbf{ C}\mathbf{ z}}}{{{{{\left( {{{\mathbf{ z}}^{\mathrm{ T}}}{{\mathbf{ C}}^2}\mathbf{ z}} \right)}}^2}}} $$

where MC1 denotes the maximum value of MC for a given spatial weight matrix C. For a large P-by-Q regular square lattice (i.e., n = PQ) and the rook’s adjacency definition, for which \( \mathrm{ M}{{\mathrm{ C}}_1} \approx 1 \), if MC = 0.25, then

$$ {{\mathbf{ 1}}^{\mathrm{ T}}}\mathbf{ Cz}\approx 0 $$
$$ {{\mathbf{ z}}^{\mathrm{ T}}}{{\mathbf{ C}}^2}\mathbf{ z}\approx 16\ \left( {\mathrm{ PQ} - 1} \right) $$
$$ {\lambda_1}=2[\cos (\tfrac{\uppi}{{\mathrm{ P}+1}})+\cos (\tfrac{\uppi}{{\mathrm{ Q}+1}})]\approx 4 $$

and, consequently, \( {{\mathrm{ r}}^2} \approx 0.05 \). Therefore, roughly 5% of the variance in a spatially autocorrelation random variable with MC = 0.25 is attributable to spatial autocorrelation.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Griffith, D., Chun, Y. (2014). Spatial Autocorrelation and Spatial Filtering. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23430-9_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23429-3

  • Online ISBN: 978-3-642-23430-9

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics