Skip to main content
Log in

Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

A distal acidification defect is frequently observed in the syndrome of familial hypomagnesaemia-hypercalciuria and hence this condition can be confused with prirnary distal renal tubular acidosis (RTA). This study demonstrates that in four unrelated patients with familial hypomagnesaemia-hypercalciuria the acidification defect is functionally different from that present in primary distal RTA. All patients exhibited hypomagnesaemia, hypermagnesuria, hypercalciuria, hyposthenuria, nephrocalcinosis and slight reduction of glomerular filtration rate (GFR). A moderate degree of metabolic acidosis was also present and basal data showed an inappropriately high urine pH (5.7–5.9) and a positive urine anion gap (Na+KCl=11–28 mmol/l). Stimulation of distal acidification induced a fall in urine pH (4.7–5.6), but ammonium excretion remained low despite factoring by GFR (26–46 μmol/min per 1.73 m2, 35–54 μmol/100 ml GF). The urine to bloodPCO2 gradient also remained low after sodium bicarbonate loading (1.3–17.7 mmHg). These results are best explained by both defective ammonia transfer to the deep nephron and impaired hydrogen ion secretion at the level of the medullary collecting duct, and probably are secondary effects of the medullary interstitial nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodríguez-Soriano J, Vallo A, García-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1: 465–472

    Google Scholar 

  2. Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB (1972) Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone) Metabolism 21: 905–920

    Google Scholar 

  3. Manz F, Schärer K, Janka P, Lombeck J (1978) Renal magnesium wasting, incomplete tubular acidosis, hypercalciuria and nephrocalcinosis in siblings. Eur J Pediatr 128: 67–79

    Google Scholar 

  4. Richard O, Freycon MT (1992) Tubulopathie congénitale avec fuite de magnésium. Pédiatrie 47: 557–563

    Google Scholar 

  5. Bianchetti MG, Oetliker OH, Lütschg J (1993) Magnesium deficiency in primary distal tubular acidosis. J Pediatr 122: 833

    Google Scholar 

  6. Castrillo JM, Rapado A, Traba ML, Esbrit P, Hernando L (1983) Nefrocalcinosis con hipomagnesemia. Nefrología 3: 159–165

    Google Scholar 

  7. Ulman A, Hadj S, Lacour B, Bourdeau A, Bader C (1985) Renal magnesium and phosphate wastage in a patient with hypercalciuria and nephrocalcinosis: effect of oral phosphorus and magnesium supplements. Nephron 40: 83–87

    Google Scholar 

  8. Ortiz A, Méndez A, Parra EG, Rodeles M, Ortiz Arduán A (1992) Hipomagnesemia familiar con hipercalciuría. Nefrología 12: 50–55

    Google Scholar 

  9. Buckalew VM Jr, Purvis ML, Schulman MG, Herndon CN, Rudman D (1974) Hereditary renal tubular acidosis. Report of a 64 member kindred with variable expression incljding idiopathic hypercalciuria. Medicine (Baltimore) 53: 229–254

    Google Scholar 

  10. Hamed IA, Czerwinski AW, Coats B, Kaufman C, Altmuller DH (1979) Familial absorptive hypercalciuria and renal tubular acidosis. Am J Med 67: 385–391

    Google Scholar 

  11. Rodríguez-Soriano J, Vallo A (1990) Renal tubular acidosis. Pediatr Nephrol 4: 268–275

    Google Scholar 

  12. Edelmann CM Jr, Boichis H, Rodríguez-Soriano J, Stark H (1967) The renal response of children to acute ammonium chloride acidosis. Pediatr Res 1: 452–460

    Google Scholar 

  13. Rodríguez-Soriano J, Vallo A (1988) Renal tubular hyperkalaemia in childhood. Pediatr Nephrol 2: 498–509

    Google Scholar 

  14. Kurtzman NA (1990) Disorders of distal acidification. Kidney Int 38: 720–727

    Google Scholar 

  15. Rodríguez-Soriano J, Vallo A, Castillo G, Oliveros R (1985) Pathophysiology of primary distal renal tubular acidosis. Int J Pediatr Nephrol 6: 71–78

    Google Scholar 

  16. Stone DK, Xie XS (1988) Proton translocating ATPases: issues in structure and function. Kidney Int 33: 767–774

    Google Scholar 

  17. Kanaka C, Plüss CR, Oetliker OH, bianchetti MG (1991) Magnesium handling in children with primary distal tubular acidosis. J Nephrol 4: 257–261

    Google Scholar 

  18. Caldas A, Broyer M, Dechaux M, Kleinknecht C (1992) Primary distal tubular acidosis in childhood: clinical study and long-term follow-up of 28 patients. J Pediatr 121: 233–241

    Google Scholar 

  19. Strife CF, Clardy CW, Varade WS, Prada AL, Waldo FB (1993) Urine-to-blood carbon dioxide tension gradient and maximal depression of urinary pH to distinguish rate-dependent from classic distal renal tubular acidosis in children. J Pediatr 122: 60–65

    Google Scholar 

  20. Batlle DC, Grupp M, Gaviria M, Kurtzman NA (1982) Distal renal tubular acidosis with intact capacity to lower urinary pH. Am J Med 72: 751–758

    Google Scholar 

  21. DuBose TD Jr, Pucacco LR, Green JM (1982) Hydrogen ion secretion by the collecting duct as a determinant of the urine bloodPCO2 gradient in alkaline urine. J Clin Invest 69: 145–156

    Google Scholar 

  22. Wrong O (1991) Distal renal tubular acidosis: the value of urinary pH,PCO2 and NH4+ measurements. Pediatr Nephrol 5: 249–255

    Google Scholar 

  23. Wrong O (1992) Nephrocalcinosis. In: Caneron JS, Davison AM, Grünfeld JP, Kerr DNS, Ritz E (eds) Oxford textbook of clinical nephrology, Oxford University Press, Oxford, pp 1882–1905

    Google Scholar 

  24. Wall SM, Knepper MA (1990) Acid-base transport in the inner medullary collecting duct. Semin Nephrol 10: 148–158

    Google Scholar 

  25. Alexander EA, Schwartz JH (1991) Regulation of acidification in the rat inner medullary collecting duct. Am J Kidney Dis 18: 612–618

    Google Scholar 

  26. Mujais S, Batlle DC (1988) Functional correlates of tubulo-interstitial damage. Semin Nephrol 8: 94–99

    Google Scholar 

  27. Schoolwerth AC, Sandler RS, Hoffman PM, Klahr S (1975) Effects of nephron reduction and dietary protein content on renal ammoniagenesis in the rat. Kidney Int 7: 397–404

    Google Scholar 

  28. Good DW, Knepper MA (1990) Mechanisms of ammonium excretion: role of the renal medulla. Semin Nephrol 10: 166–173

    Google Scholar 

  29. Knepper MA (1991) NH4+ transport in the kidney. Kidney Int 40 [Suppl 33]: S95-S102

    Google Scholar 

  30. Carlisle EJF, Donnelly SM, Halperin ML (1991) Renal tubular acidosis (RTA): Recognize The Ammonium defect and pHorget the urine pH. Pediatr Nephrol 5: 242–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Soriano, J., Vallo, A. Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria. Pediatr Nephrol 8, 431–435 (1994). https://doi.org/10.1007/BF00856522

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00856522

Key words

Navigation