Skip to main content

Advertisement

Log in

The pathophysiology of distal renal tubular acidosis

  • Review Article
  • Published:

From Nature Reviews Nephrology

View current issue Sign up to alerts

Abstract

The kidneys have a central role in the control of acid–base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.

Key points

  • Primary distal renal tubular acidosis (dRTA) is caused by pathogenic variants in at least five different genes: SLC4A1, ATP6V0A4, ATP6V1B1, FOXI1 and WDR72; additional unidentified genes might also contribute.

  • Acquired forms of dRTA are often found in patients who have autoimmune disorders or who take drugs that reduce the ability of the kidney to excrete acids.

  • Although kidney pathological conditions in dRTA are mostly restricted to intercalated cells, systemic acidosis also affects other renal cell types and extrarenal organs.

  • Pathogenic variants in all known dRTA genes also cause extrarenal pathological conditions owing to their expression in the inner ear, red blood cells or teeth.

  • Primary and secondary forms of dRTA should be diagnosed and treated to prevent the sequelae of systemic acidosis on growth and bone stability; primary dRTA might also be a risk factor for the development of chronic kidney disease.

  • Incomplete dRTA is often associated with kidney stone disease and may represent an intermediate pre-acidotic form of the complete syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Repertoire of cells in the collecting duct system.
Fig. 2: Role of the transcription factor FOXI1 in intercalated cell differentiation.
Fig. 3: Cellular pathophysiology of dRTA-causing mutations in SLC4A1, ATP6V1B1, ATP6V0A4 and WDR72.
Fig. 4: Spectrum of clinical features associated with primary dRTA.

Similar content being viewed by others

References

  1. Haque, S. K., Ariceta, G. & Batlle, D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol. Dial. Transpl. 27, 4273–4287 (2012).

    Article  CAS  Google Scholar 

  2. Karet, F. E. Mechanisms in hyperkalemic renal tubular acidosis. J. Am. Soc. Nephrol. 20, 251–254 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Palmer, B. F., Kelepouris, E. & Clegg, D. J. Renal tubular acidosis and management strategies: a narrative review. Adv. Ther. 38, 949–968 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Emmett, M. Review of clinical disorders causing metabolic acidosis. Adv. Chronic Kidney Dis. 29, 355–363 (2022).

    Article  PubMed  Google Scholar 

  5. Bianic, F. et al. Epidemiology of distal renal tubular acidosis: a study using linked UK primary care and hospital data. Nephron 145, 486–495 (2021).

    Article  PubMed  Google Scholar 

  6. Bryant G., Law L. & Li-McLeod, J. Estimate of prevalence of secondary distal renal tubular acidosis among patients with Sjogren’s Syndrome and Systemic Lupus Erythematosus in a US population with Employer-Sponsored Health Insurance [abstract]. Arthritis Rheumatol. 71, Abs 1102 (2019).

    Google Scholar 

  7. Silva, C., Law, L., Li-McLeod, J. & L, G. PUK20 estimate of prevalence of primary distal renal tubular acidosis among the us population with employer-sponsored health insurance (abstract). Value Health 22, S384 (2019).

    Article  Google Scholar 

  8. Wesson, D. E., Buysse, J. M. & Bushinsky, D. A. Mechanisms of metabolic acidosis-induced kidney injury in chronic kidney disease. J. Am. Soc. Nephrol. 31, 469–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imenez Silva, P. H. & Mohebbi, N. Kidney metabolism and acid–base control: back to the basics. Pflugers Arch. 474, 919–934 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trepiccione, F. et al. Distal renal tubular acidosis: ERKNet/ESPN clinical practice points. Nephrol. Dial. Transpl. 36, 1585–1596 (2021).

    Article  CAS  Google Scholar 

  11. Wagner, C. A., Devuyst, O., Bourgeois, S. & Mohebbi, N. Regulated acid–base transport in the collecting duct. Pflugers Arch. 458, 137–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Roy, A., Al-bataineh, M. M. & Pastor-Soler, N. M. Collecting duct intercalated cell function and regulation. Clin. J. Am. Soc. Nephrol. 10, 305–324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bankir, L. et al. Medullary and cortical thick ascending limb: similarities and differences. Am. J. Physiol. Renal Physiol. https://doi.org/10.1152/ajprenal.00261.2019 (2019).

    Article  PubMed  Google Scholar 

  14. Capasso, G., Unwin, R., Rizzo, M., Pica, A. & Giebisch, G. Bicarbonate transport along the loop of Henle: molecular mechanisms and regulation. J. Nephrol. 15 (Suppl. 5), S88–S96 (2002).

    CAS  PubMed  Google Scholar 

  15. Curthoys, N. P. & Moe, O. W. Proximal tubule function and response to acidosis. Clin. J. Am. Soc. Nephrol. 9, 1627–1638 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Christensen, E. I., Wagner, C. A. & Kaissling, B. Uriniferous tubule: structural and functional organization. Compr. Physiol. 2, 805–861 (2012).

    Article  PubMed  Google Scholar 

  17. Wagner, C. A. et al. Renal vacuolar H+-ATPase. Physiol. Rev. 84, 1263–1314 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Alper, S. L., Natale, J., Gluck, S., Lodish, H. F. & Brown, D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc. Natl Acad. Sci. USA 86, 5429–5433 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Royaux, I. E. et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc. Natl Acad. Sci. USA 98, 4221–4226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, J., Kim, Y. H., Cha, J. H., Tisher, C. C. & Madsen, K. M. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J. Am. Soc. Nephrol. 10, 1–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Wall, S. M. The role of pendrin in blood pressure regulation. Am. J. Physiol. Renal Physiol. 310, F193–F203 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Gueutin, V. et al. Renal β-intercalated cells maintain body fluid and electrolyte balance. J. Clin. Invest. 123, 4219–4231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacques, T. et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J. Am. Soc. Nephrol. 24, 1104–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinning, A. et al. Double knockout of the Na+-driven Cl/HCO3 exchanger and Na+/Cl cotransporter induces hypokalemia and volume depletion. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2015070734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheval, L. et al. Acidosis-induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiol. 232, e13661 (2021).

    Article  CAS  Google Scholar 

  26. Welsh-Bacic, D., Nowik, M., Kaissling, B. & Wagner, C. A. Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS One 6, e25240 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Genini, A., Mohebbi, N., Daryadel, A., Bettoni, C. & Wagner, C. A. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch. 472, 1079–1092 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Gao, C. et al. Generation of distal renal segments involves a unique population of Aqp2+ progenitor cells. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2021030399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blomqvist, S. R. et al. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J. Clin. Invest. 113, 1560–1570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Werth, M. et al. Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. Elife https://doi.org/10.7554/eLife.24265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo, Q. et al. Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J. Am. Soc. Nephrol. 26, 149–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Duong Van Huyen, J. P. et al. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J. Am. Soc. Nephrol. 19, 1965–1974 (2008).

    Article  PubMed  Google Scholar 

  33. Gao, X. et al. Deletion of hensin/DMBT1 blocks conversion of β- to α-intercalated cells and induces distal renal tubular acidosis. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1010364107 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schwaderer, A. L., Vijayakumar, S., Al-Awqati, Q. & Schwartz, G. J. Galectin-3 expression is induced in renal β-intercalated cells during metabolic acidosis. Am. J. Physiol. Renal Physiol. 290, F148–F158 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Al-Awqati, Q. Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu. Rev. Physiol. 73, 401–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz, G. J. et al. SDF1 induction by acidosis from principal cells regulates intercalated cell subtype distribution. J. Clin. Invest. 125, 4365–4374 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bruce, L. J. et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J. Clin. Invest. 100, 1693–1707 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karet, F. E. et al. Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc. Natl Acad. Sci. USA 95, 6337–6342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vasuvattakul, S. et al. Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int. 56, 1674–1682 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Kollert-Jons, A., Wagner, S., Hubner, S., Appelhans, H. & Drenckhahn, D. Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am. J. Physiol. 265, F813–F821 (1993).

    CAS  PubMed  Google Scholar 

  41. Giglio, S., Montini, G., Trepiccione, F., Gambaro, G. & Emma, F. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment. J. Nephrol. 34, 2073–2083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palazzo, V. et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney Int. 91, 1243–1255 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Khositseth, S. et al. Tropical distal renal tubular acidosis: clinical and epidemiological studies in 78 patients. QJM 105, 861–877 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Mohebbi, N. & Wagner, C. A. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J. Nephrol. https://doi.org/10.1007/s40620-017-0447-1 (2017).

  45. Akel, A. et al. Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the Cl/HCO3 exchanger AE1. Am. J. Physiol. Cell Physiol. 292, C1759–C1767 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Stehberger, P. A. et al. Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl/HCO3 exchanger (slc4a1). J. Am. Soc. Nephrol. 18, 1408–1418 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mumtaz, R. et al. Intercalated cell depletion and vacuolar H+-ATPase mistargeting in an Ae1 R607H knockin model. J. Am. Soc. Nephrol. 28, 1507–1520 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Cordat, E. et al. Dominant and recessive distal renal tubular acidosis mutations of kidney anion exchanger 1 induce distinct trafficking defects in MDCK cells. Traffic 7, 117–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kittanakom, S., Cordat, E., Akkarapatumwong, V., Yenchitsomanus, P. T. & Reithmeier, R. A. Trafficking defects of a novel autosomal recessive distal renal tubular acidosis mutant (S773P) of the human kidney anion exchanger (kAE1). J. Biol. Chem. 279, 40960–40971 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Bertocchio, J. P. et al. Red blood cell AE1/Band 3 transports in dominant distal renal tubular acidosis patients. Kidney Int. Rep. 5, 348–357 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jarolim, P. et al. Autosomal dominant distal renal tubular acidosis is associated in three families with heterozygosity for the R589H mutation in the AE1 (band 3) Cl-/HCO3- exchanger. J. Biol. Chem. 273, 6380–6388 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Devonald, M. A., Smith, A. N., Poon, J. P., Ihrke, G. & Karet, F. E. Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Nat. Genet. 33, 125–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rungroj, N. et al. A novel missense mutation in AE1 causing autosomal dominant distal renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. J. Biol. Chem. 279, 13833–13838 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Quilty, J. A., Li, J. & Reithmeier, R. A. Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1. Am. J. Physiol. Renal Physiol. 282, F810–F820 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Almomani, E., Lashhab, R., Alexander, R. T. & Cordat, E. The carboxyl-terminally truncated kidney anion exchanger 1 R901X dRTA mutant is unstable at the plasma membrane. Am. J. Physiol. Cell Physiol. 310, C764–C772 (2016).

    Article  PubMed  Google Scholar 

  56. Su, Y. et al. Physical and functional links between anion exchanger-1 and sodium pump. J. Am. Soc. Nephrol. 26, 400–409 (2015).

    Article  PubMed  Google Scholar 

  57. Sabolic, I., Herak-Kramberger, C. M., Breton, S. & Brown, D. Na/K-ATPase in intercalated cells along the rat nephron revealed by antigen retrieval. J. Am. Soc. Nephrol. 10, 913–922 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Chambrey, R. et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc. Natl Acad. Sci. USA 110, 7928–7933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tanphaichitr, V. S. et al. Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J. Clin. Invest. 102, 2173–2179 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walsh, S., Borgese, F., Gabillat, N., Unwin, R. & Guizouarn, H. Cation transport activity of anion exchanger 1 mutations found in inherited distal renal tubular acidosis. Am. J. Physiol. Renal Physiol. 295, F343–F350 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Walsh, S. et al. Immunohistochemical comparison of a case of inherited distal renal tubular acidosis (with a unique AE1 mutation) with an acquired case secondary to autoimmune disease. Nephrol. Dial. Transpl. 22, 807–812 (2007).

    Article  Google Scholar 

  62. Vichot, A. A. et al. Loss of kAE1 expression in collecting ducts of end-stage kidneys from a family with SLC4A1 G609R-associated distal renal tubular acidosis. Clin. Kidney J. 10, 135–140 (2017).

    CAS  PubMed  Google Scholar 

  63. Miranda, K. C., Karet, F. E. & Brown, D. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants. PLoS One 5, e9531 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Figueiredo, M. et al. The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule. Pflugers Arch. 473, 1229–1246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eaton, A. F., Merkulova, M. & Brown, D. The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. Am. J. Physiol. Cell Physiol. 320, C392–C414 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, A. N. et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat. Genet. 26, 71–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Lopez-Garcia, S. C. et al. Treatment and long-term outcome in primary distal renal tubular acidosis. Nephrol. Dial. Transpl. 34, 981–991 (2019).

    Article  CAS  Google Scholar 

  69. Atmis, B. et al. Evaluation of phenotypic and genotypic features of children with distal kidney tubular acidosis. Pediatr. Nephrol. 35, 2297–2306 (2020).

    Article  PubMed  Google Scholar 

  70. Gomez-Conde, S. et al. Molecular aspects and long-term outcome of patients with primary distal renal tubular acidosis. Pediatr. Nephrol. 36, 3133–3142 (2021).

    Article  PubMed  Google Scholar 

  71. Guo, W. et al. Genotypic and phenotypic analysis in 51 Chinese patients with primary distal renal tubular acidosis. Clin. Genet. 100, 440–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Frische, S. et al. H+-ATPase B1 subunit localizes to thick ascending limb and distal convoluted tubule of rodent and human kidney. Am. J. Physiol. Renal Physiol. 315, F429–F444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Finberg, K.E. et al. The B1-subunit of the H(+) ATPase is required for maximal urinary acidification. Proc. Natl Acad. Sci. USA 102, 13616–13621 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Paunescu, T. G. et al. Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am. J. Physiol. Renal Physiol. 293, F1915–F1926 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Rothenberger, F., Velic, A., Stehberger, P. A., Kovacikova, J. & Wagner, C. A. Angiotensin II stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J. Am. Soc. Nephrol. 18, 2085–2093 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, Q., Li, G., Singh, S. K., Alexander, E. A. & Schwartz, J. H. Vacuolar H+-ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells. J. Am. Soc. Nephrol. 17, 1858–1866 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fuster, D. G., Zhang, J., Xie, X. S. & Moe, O. W. The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int. 73, 1151–1158 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Pathare, G. et al. Changes in V-ATPase subunits of human urinary exosomes reflect the renal response to acute acid/alkali loading and the defects in distal renal tubular acidosis. Kidney Int. 93, 871–880 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, S. et al. The urine-blood PCO gradient as a diagnostic index of H+-ATPase defect distal renal tubular acidosis. Kidney Int. 66, 761–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Stehberger, P. et al. Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis. J. Am. Soc. Nephrol. 14, 3027–3038 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Hennings, J. C. et al. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol. Med. 4, 1057–1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat. Cell Biol. 8, 124–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Schulz, N., Dave, M. H., Stehberger, P. A., Chau, T. & Wagner, C. A. Differential localization of vacuolar H+-ATPases containing a1, a2, a3, or a4 (ATP6V0A1-4) subunit isoforms along the nephron. Cell Physiol. Biochem. 20, 109–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Bugarski, M., Ghazi, S., Polesel, M., Martins, J. R. & Hall, A. M. Changes in NAD and lipid metabolism drive acidosis-induced acute kidney injury. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2020071003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ochotny, N. et al. Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J. Biol. Chem. 281, 26102–26111 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Su, Y., Zhou, A., Al-Lamki, R. S. & Karet, F. E. The ‘a’ subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J. Biol. Chem. 278, 20013–20018 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Ghazi, S. et al. Multiparametric imaging reveals that mitochondria-rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity. FASEB J. 34, 8510–8525 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Jobst-Schwan, T. et al. Whole exome sequencing identified ATP6V1C2 as a novel candidate gene for recessive distal renal tubular acidosis. Kidney Int. 97, 567–579 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ashton, E. & Bockenhauer, D. Diagnosis of uncertain significance: can next-generation sequencing replace the clinician. Kidney Int. 97, 455–457 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Enerback, S. et al. Acidosis and deafness in patients with recessive mutations in FOXI1. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2017080840 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang, T. et al. Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am. J. Hum. Genet. 80, 1055–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Igarashi, T. et al. Renal cyst formation as a complication of primary distal renal tubular acidosis. Nephron 59, 75–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Besouw, M. T. P. et al. Clinical and molecular aspects of distal renal tubular acidosis in children. Pediatr. Nephrol. 32, 987–996 (2017).

    Article  PubMed  Google Scholar 

  95. Barone, S. et al. Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2020190118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, J., Kang, H. & Kong, X. [Diagnosis of a Chinese pedigree affected with autosomal recessive deafness 4 with enlarged vestibular aqueduct due to compound heterozygous variants of FOXI1 gene]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 39, 1080–1084 (2022).

    PubMed  Google Scholar 

  97. Ransick, A. et al. Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev. Cell 51, 399–413.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blomqvist, S. R., Vidarsson, H., Soder, O. & Enerback, S. Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J. 25, 4131–4141 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vidarsson, H. et al. The forkhead transcription factor Foxi1 is a master regulator of vacuolar H-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS One 4, e4471 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. El-Sayed, W. et al. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am. J. Hum. Genet. 85, 699–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, H. et al. WDR72 mutations associated with amelogenesis imperfecta and acidosis. J. Dent. Res. 98, 541–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin. Genet. 94, 409–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Khandelwal, P. et al. Phenotypic variability in distal acidification defects associated with WDR72 mutations. Pediatr. Nephrol. 36, 881–887 (2021).

    Article  PubMed  Google Scholar 

  106. Kawabe, H. et al. A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca2+-dependent exocytosis of neurotransmitter. Genes. Cell 8, 537–546 (2003).

    Article  CAS  Google Scholar 

  107. Nagano, F. et al. Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. J. Biol. Chem. 277, 9629–9632 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Merkulova, M. et al. Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci. Rep. 5, 14827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Howles, S. A. et al. Genetic variants of calcium and vitamin D metabolism in kidney stone disease. Nat. Commun. 10, 5175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Benonisdottir, S. et al. Sequence variants associating with urinary biomarkers. Hum. Mol. Genet. 28, 1199–1211 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Osman, W. M. et al. Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: a cross-sectional study. BMJ Open 8, e020759 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kottgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Franceschini, N. et al. Generalization of associations of kidney-related genetic loci to American Indians. Clin. J. Am. Soc. Nephrol. 9, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Joseph, C. B. et al. Meta-GWAS reveals novel genetic variants associated with urinary excretion of uromodulin. J. Am. Soc. Nephrol. 33, 511–529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, Y. C. et al. Genome-wide association study identifies eight novel loci for susceptibility of scrub typhus and highlights immune-related signaling pathways in its pathogenesis. Cells https://doi.org/10.3390/cells10030570 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Boettger, T. et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416, 874–878 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Biver, S. et al. A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456, 339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Francois, H. & Mariette, X. Renal involvement in primary Sjogren syndrome. Nat. Rev. Nephrol. 12, 82–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Both, T. et al. Prevalence of distal renal tubular acidosis in primary Sjogren’s syndrome. Rheumatology 54, 933–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Pertovaara, M., Korpela, M., Kouri, T. & Pasternack, A. The occurrence of renal involvement in primary Sjogren’s syndrome: a study of 78 patients. Rheumatology 38, 1113–1120 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Ren, H. et al. Renal involvement and followup of 130 patients with primary Sjogren’s syndrome. J. Rheumatol. 35, 278–284 (2008).

    CAS  PubMed  Google Scholar 

  122. Zhang, Y. et al. Renal tubular acidosis and associated factors in patients with primary Sjogren’s syndrome: a registry-based study. Clin. Rheumatol. https://doi.org/10.1007/s10067-022-06426-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Xu, C. et al. Presence of serum autoantibodies to vacuolar H+-ATPase in patients with renal tubular acidosis. Int. J. Rheum. Dis. 22, 805–814 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Takemoto, F. et al. Autoantibodies against carbonic anhydrase II are increased in renal tubular acidosis associated with Sjogren syndrome. Am. J. Med. 118, 181–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kino-Ohsaki, J. et al. Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjogren’s syndrome. Gastroenterology 110, 1579–1586 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Nishimori, I. et al. Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II. J. Immunol. 154, 4865–4873 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Takemoto, F. et al. Induction of anti-carbonic-anhydrase-II antibody causes renal tubular acidosis in a mouse model of Sjogren’s syndrome. Nephron Physiol. 106, p63–p68 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Pares, A., Rimola, A., Bruguera, M., Mas, E. & Rodes, J. Renal tubular acidosis in primary biliary cirrhosis. Gastroenterology 80, 681–686 (1981).

    Article  CAS  PubMed  Google Scholar 

  129. Elitok, S. et al. A patient with chronic kidney disease, primary biliary cirrhosis and metabolic acidosis. Clin. Kidney J. https://doi.org/10.1093/ckj/sfz059 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bansal, T., Takou, A. & Khwaja, A. Progressive chronic kidney disease secondary to tubulointerstitial nephritis in primary biliary cirrhosis. Clin. Kidney J. 5, 442–444 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ungureanu, O. & Ismail, G. Distal renal tubular acidosis in patients with autoimmune diseases-an update on pathogenesis, clinical presentation and therapeutic strategies. Biomedicines https://doi.org/10.3390/biomedicines10092131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Takahashi, N. et al. Tubulointerstitial nephritis with IgM-positive plasma cells. J. Am. Soc. Nephrol. 28, 3688–3698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maurel, S. et al. Prevalence and correlates of metabolic acidosis among patients with homozygous sickle cell disease. Clin. J. Am. Soc. Nephrol. 9, 648–653 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cazenave, M. et al. Tubular acidification defect in adults with sickle cell disease. Clin. J. Am. Soc. Nephrol. 15, 16–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Gong, R., Wang, P. & Dworkin, L. What we need to know about the effect of lithium on the kidney. Am. J. Physiol. Renal Physiol. 311, F1168–F1171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Himmel, N. J., Wang, Y., Rodriguez, D. A., Sun, M. A. & Blount, M. A. Chronic lithium treatment induces novel patterns of pendrin localization and expression. Am. J. Physiol. Renal Physiol. 315, F313–F322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopez-Cayuqueo, K. I. et al. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. Kidney Int. 94, 514–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Trepiccione, F., Altobelli, C., Capasso, G., Christensen, B. M. & Frische, S. Lithium increases ammonium excretion leading to altered urinary acid-base buffer composition. J. Nephrol. 31, 385–393 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. McCurdy, D. K., Frederic, M. & Elkinton, J. R. Renal tubular acidosis due to amphotericin B. N. Eng. J. Med. 278, 124–131 (1968).

    Article  CAS  Google Scholar 

  140. Gil, F. Z. & Malnic, G. Effect of amphotericin B on renal tubular acidification in the rat. Pflugers Arch. 413, 280–286 (1989).

    Article  CAS  PubMed  Google Scholar 

  141. Roscoe, J. M., Goldstein, M. B., Halperin, M. L., Schloeder, F. X. & Stinebaugh, B. J. Effect of amphotericin B on urine acidification in rats: implications for the pathogenesis of distal renal tubular acidosis. J. Lab. Clin. Med. 89, 463–470 (1977).

    CAS  PubMed  Google Scholar 

  142. Steinmetz, P. R. & Lawson, L. R. Defect in urinary acidification induced in vitro by amphotericin B. J. Clin. Invest. 49, 596–601 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Henger, A., Tutt, P., Riesen, W. F., Hulter, H. N. & Krapf, R. Acid–base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. J. Lab. Clin. Med. 136, 379–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Kovacikova, J. et al. The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase. Kidney Int. 70, 1706–1716 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Hropot, M., Fowler, N., Karlmark, B. & Giebisch, G. Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int. 28, 477–489 (1985).

    Article  CAS  PubMed  Google Scholar 

  146. Reyes, A. J., Leary, W. P., Crippa, G., Maranhao, M. F. & Hernandez-Hernandez, R. The aldosterone antagonist and facultative diuretic eplerenone: a critical review. Eur. J. Intern. Med. 16, 3–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Chang, S. S. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat. Genet. 12, 248–253 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Camara-Lemarroy, C. R., Rodriguez-Gutierrez, R., Monreal-Robles, R. & Gonzalez-Gonzalez, J. G. Acute toluene intoxication–clinical presentation, management and prognosis: a prospective observational study. BMC Emerg. Med. 15, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Taher, S. M., Anderson, R. J., McCartney, R., Popovtzer, M. M. & Schrier, R. W. Renal tubular acidosis associated with toluene “sniffing”. N. Engl. J. Med. 290, 765–768 (1974).

    Article  CAS  PubMed  Google Scholar 

  150. Carlisle, E. J. et al. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J. Am. Soc. Nephrol. 1, 1019–1027 (1991).

    Article  CAS  PubMed  Google Scholar 

  151. Kamijima, M. et al. Metabolic acidosis and renal tubular injury due to pure toluene inhalation. Arch. Env. Health 49, 410–413 (1994).

    Article  CAS  Google Scholar 

  152. Goodwin, T. M. Toluene abuse and renal tubular acidosis in pregnancy. Obstet. Gynecol. 71, 715–718 (1988).

    CAS  PubMed  Google Scholar 

  153. Mirza, N., Marson, A. G. & Pirmohamed, M. Effect of topiramate on acid-base balance: extent, mechanism and effects. Br. J. Clin. Pharmacol. 68, 655–661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dafnis, E., Spohn, M., Lonis, B., Kurtzman, N. A. & Sabatini, S. Vanadate causes hypokalemic distal renal tubular acidosis. Am. J. Physiol. 262, F449–F453 (1992).

    CAS  PubMed  Google Scholar 

  155. Tosukhowong, P., Tungsanga, K., Eiam-Ong, S. & Sitprija, V. Environmental distal renal tubular acidosis in Thailand: an enigma. Am. J. Kidney Dis. 33, 1180–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Caldas, A., Broyer, M., Dechaux, M. & Kleinknecht, C. Primary distal tubular acidosis in childhood: clinical study and long-term follow-up of 28 patients. J. Pediatr. 121, 233–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Khositseth, S. et al. Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies. Am. J. Hematol. 83, 465–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Khositseth, S. et al. Distal renal tubular acidosis associated with anion exchanger 1 mutations in children in Thailand. Am. J. Kidney Dis. 49, 841–850 e841 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Wrong, O. Distal renal tubular acidosis: the value of urinary pH, PCO2 and NH4+ measurements. Pediatr. Nephrol. 5, 249–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  160. Wrong, O. & Davies, H. E. The excretion of acid in renal disease. Q. J. Med. 28, 259–313 (1959).

    CAS  PubMed  Google Scholar 

  161. Magni, G., Unwin, R. J. & Moochhala, S. H. Renal tubular acidosis (RTA) and kidney stones: diagnosis and management. Arch. Esp. Urol. 74, 123–128 (2021).

    PubMed  Google Scholar 

  162. Brennan, S., Hering-Smith, K. & Hamm, L. L. Effect of pH on citrate reabsorption in the proximal convoluted tubule. Am. J. Physiol. 255, F301–F306 (1988).

    CAS  PubMed  Google Scholar 

  163. Nicar, M. J., Hill, K. & Pak, C. Y. Inhibition by citrate of spontaneous precipitation of calcium oxalate in vitro. J. Bone Miner. Res. 2, 215–220 (1987).

    Article  CAS  PubMed  Google Scholar 

  164. Alexander, R. T., Cordat, E., Chambrey, R., Dimke, H. & Eladari, D. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2016030305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Brenner, R. J. et al. Incidence of radiographically evident bone disease, nephrocalcinosis, and nephrolithiasis in various types of renal tubular acidosis. N. Engl. J. Med. 307, 217–221 (1982).

    Article  CAS  PubMed  Google Scholar 

  166. Evenepoel, P. et al. Microscopic nephrocalcinosis in chronic kidney disease patients. Nephrol. Dial. Transpl. 30, 843–848 (2015).

    Article  CAS  Google Scholar 

  167. Tang, X. et al. Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int. 87, 623–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Watanabe, T. Proximal renal tubular dysfunction in primary distal renal tubular acidosis. Pediatr. Nephrol. 20, 86–88 (2005).

    Article  PubMed  Google Scholar 

  169. Sebastian, A., McSherry, E. & Morris, R. C. Jr. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J. Clin. Invest. 58, 454–469 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wall, S. M., Verlander, J. W. & Romero, C. A. The renal physiology of pendrin-positive intercalated cells. Physiol. Rev. 100, 1119–1147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Aronson, P. S. & Giebisch, G. Effects of pH on potassium: new explanations for old observations. J. Am. Soc. Nephrol. 22, 1981–1989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Stankovic, K. M., Brown, D., Alper, S. L. & Adams, J. C. Localization of pH regulating proteins H+ ATPase and Cl/HCO3 exchanger in guinea pig inner ear. Hear. Res. 114, 21–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Dou, H. et al. Co-expression of pendrin, vacuolar H+-ATPase α4-subunit and carbonic anhydrase II in epithelial cells of the murine endolymphatic sac. J. Histochem. Cytochem. 52, 1377–1384 (2004).

    CAS  PubMed  Google Scholar 

  174. Kim, H. M. & Wangemann, P. Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PLoS One 5, e14041 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hulander, M. et al. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130, 2013–2025 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Hans, S., Irmscher, A. & Brand, M. Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development 140, 1936–1945 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Jennings, M. L. Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. Am. J. Physiol. Cell Physiol. 321, C1028–C1059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lux, S. E. T. Anatomy of the red cell membrane skeleton: unanswered questions. Blood 127, 187–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Allen, S. J. et al. Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am. J. Trop. Med. Hyg. 60, 1056–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Guizouarn, H. et al. South-east Asian ovalocytosis and the cryohydrocytosis form of hereditary stomatocytosis show virtually indistinguishable cation permeability defects. Br. J. Haematol. 152, 655–664 (2011).

    Article  PubMed  Google Scholar 

  181. Walsh, S., Borgese, F., Gabillat, N. & Guizouarn, H. Southeast Asian AE1 associated renal tubular acidosis: cation leak is a class effect. Biochem. Biophys. Res. Commun. 382, 668–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Breton, S. & Brown, D. Regulation of luminal acidification by the V-ATPase. Physiology 28, 318–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Norgett, E. E. et al. Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. Proc. Natl Acad. Sci. USA 109, 13775–13780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Paunescu, T. G. et al. Loss of the V-ATPase B1 subunit isoform expressed in non-neuronal cells of the mouse olfactory epithelium impairs olfactory function. PLoS One 7, e45395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Katsura, K. et al. WDR72 regulates vesicle trafficking in ameloblasts. Sci. Rep. 12, 2820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Domrongkitchaiporn, S. et al. Bone mineral density and histology in distal renal tubular acidosis. Kidney Int. 59, 1086–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Arnett, T. R. Extracellular pH regulates bone cell function. J. Nutr. 138, 415S–418S (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Imenez Silva, P. H. et al. The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int. 97, 920–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Imenez Silva, P. H. & Wagner, C. A. Physiological relevance of proton-activated GPCRs. Pflugers Arch. https://doi.org/10.1007/s00424-022-02671-1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lopez, I., Aguilera-Tejero, E., Felsenfeld, A. J., Estepa, J. C. & Rodriguez, M. Direct effect of acute metabolic and respiratory acidosis on parathyroid hormone secretion in the dog. J. Bone Miner. Res. 17, 1691–1700 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Graham, K. A., Hoenich, N. A., Tarbit, M., Ward, M. K. & Goodship, T. H. Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. J. Am. Soc. Nephrol. 8, 627–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  192. Langman, C. B. Calcitriol metabolism during chronic metabolic acidosis. Semin. Nephrol. 9, 65–71 (1989).

    CAS  PubMed  Google Scholar 

  193. Domrongkitchaiporn, S. et al. Bone histology and bone mineral density after correction of acidosis in distal renal tubular acidosis. Kidney Int. 62, 2160–2166 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Kleta, R. & Bockenhauer, D. Salt-losing tubulopathies in children: what’s new, what’s controversial? J. Am. Soc. Nephrol. 29, 727–739 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Downie, M. L., Lopez Garcia, S. C., Kleta, R. & Bockenhauer, D. Inherited tubulopathies of the kidney: insights from genetics. Clin. J. Am. Soc. Nephrol. 16, 620–630 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Bertholet-Thomas, A. et al. Efficacy and safety of an innovative prolonged-release combination drug in patients with distal renal tubular acidosis: an open-label comparative trial versus standard of care treatments. Pediatr. Nephrol. 36, 83–91 (2021).

    Article  PubMed  Google Scholar 

  197. Passey, C. Reducing the dietary acid load: how a more alkaline diet benefits patients with chronic kidney disease. J. Ren. Nutr. 27, 151–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Reilly, R. F. & Huang, C. L. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat. Rev. Nephrol. 7, 669–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Ito, H., Kotake, T. & Suzuki, F. Incidence and clinical features of renal tubular acidosis-1 in urolithiasis. Urol. Int. 50, 82–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  200. Osther, P. J., Bollerslev, J., Hansen, A. B., Engel, K. & Kildeberg, P. Pathophysiology of incomplete renal tubular acidosis in recurrent renal stone formers: evidence of disturbed calcium, bone and citrate metabolism. Urol. Res. 21, 169–173 (1993).

    Article  CAS  PubMed  Google Scholar 

  201. Dhayat, N. A. et al. Furosemide/fludrocortisone test and clinical parameters to diagnose incomplete distal renal tubular acidosis in kidney stone formers. Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/CJN.01320217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Fuster, D. G. & Moe, O. W. Incomplete distal renal tubular acidosis and kidney stones. Adv. Chronic Kidney Dis. 25, 366–374 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wikstrom, B. et al. Ambulatory diagnostic evaluation of 389 recurrent renal stone formers. A proposal for clinical classification and investigation. Klin. Wochenschr. 61, 85–90 (1983).

    Article  CAS  PubMed  Google Scholar 

  204. Williams, G. & Chisholm, G. D. Stone screening and follow-up are necessary. Br. J. Urol. 47, 745–750 (1975).

    Article  CAS  PubMed  Google Scholar 

  205. Sharma, A. P. et al. Incomplete distal renal tubular acidosis affects growth in children. Nephrol. Dial. Transpl. 22, 2879–2885 (2007).

    Article  Google Scholar 

  206. Sharma, A. P. et al. Bicarbonate therapy improves growth in children with incomplete distal renal tubular acidosis. Pediatr. Nephrol. 24, 1509–1516 (2009).

    Article  PubMed  Google Scholar 

  207. Weger, M., Deutschmann, H., Weger, W., Kotanko, P. & Skrabal, F. Incomplete renal tubular acidosis in ‘primary’ osteoporosis. Osteoporos. Int. 10, 325–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. Weger, W., Kotanko, P., Weger, M., Deutschmann, H. & Skrabal, F. Prevalence and characterization of renal tubular acidosis in patients with osteopenia and osteoporosis and in non-porotic controls. Nephrol. Dial. Transpl. 15, 975–980 (2000).

    Article  CAS  Google Scholar 

  209. Pongchaiyakul, C., Domrongkitchaiporn, S., Stitchantrakul, W., Chailurkit, L. O. & Rajatanavin, R. Incomplete renal tubular acidosis and bone mineral density: a population survey in an area of endemic renal tubular acidosis. Nephrol. Dial. Transpl. 19, 3029–3033 (2004).

    Article  Google Scholar 

  210. Henderson, L. J. & Palmer, W. W. On the several factors of acid excretion. J. Biol. Chem. 17, 305–315 (1914).

    Article  CAS  Google Scholar 

  211. Buckalew, V. M. Jr., McCurdy, D. K., Ludwig, G. D., Chaykin, L. B. & Elkinton, J. R. Incomplete renal tubular acidosis. Physiologic studies in three patients with a defect in lowering urine pH. Am. J. Med. 45, 32–42 (1968).

    Article  PubMed  Google Scholar 

  212. Delaunay, J. et al. Band 3 courcouronne: homozygous mutation Ser667Phe causes severe hereditary spherocytosis and incomplete distal renal tubular acidosis. Blood 108, 1563–1563 (2006).

    Article  Google Scholar 

  213. Zhang, J. et al. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit. Am. J. Physiol. Renal Physiol. 307, F1063–F1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Dhayat, N. A. et al. The Vacuolar H+-ATPase B1 subunit polymorphism p.E161K associates with impaired urinary acidification in recurrent stone formers. J. Am. Soc. Nephrol. 27, 1544–1554 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Bourgeois, S., Bettoni, C., Baron, S. & Wagner, C. A. Haploinsufficiency of the mouse Atp6v1b1 gene leads to a mild acid-base disturbance with implications for kidney stone disease. Cell Physiol. Biochem. 47, 1095–1107 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Osther, P. J., Hansen, A. B. & Rohl, H. F. Renal acidification defects in medullary sponge kidney. Br. J. Urol. 61, 392–394 (1988).

    Article  CAS  PubMed  Google Scholar 

  217. Aasarod, K., Haga, H. J., Berg, K. J., Hammerstrom, J. & Jorstad, S. Renal involvement in primary Sjogren’s syndrome. QJM 93, 297–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Rodriguez-Soriano, J. & Vallo, A. Pathophysiology of the renal acidification defect present in the syndrome of familial hypomagnesaemia-hypercalciuria. Pediatr. Nephrol. 8, 431–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  219. Dessombz, A., Letavernier, E., Haymann, J. P., Bazin, D. & Daudon, M. Calcium phosphate stone morphology can reliably predict distal renal tubular acidosis. J. Urol. 193, 1564–1569 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. de Bruijn, P. I. et al. Furosemide-induced urinary acidification is caused by pronounced H+ secretion in the thick ascending limb. Am. J. Physiol. Renal Physiol. https://doi.org/10.1152/ajprenal.00154.2015 (2015).

    Article  PubMed  Google Scholar 

  221. Walsh, S. B., Shirley, D. G., Wrong, O. M. & Unwin, R. J. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 71, 1310–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  222. Preminger, G. M., Sakhaee, K. & Pak, C. Y. Hypercalciuria and altered intestinal calcium absorption occurring independently of vitamin D in incomplete distal renal tubular acidosis. Metabolism 36, 176–179 (1987).

    Article  CAS  PubMed  Google Scholar 

  223. Batlle, D. C., Sabatini, S. & Kurtzman, N. A. On the mechanism of toluene-induced renal tubular acidosis. Nephron 49, 210–218 (1988).

    Article  CAS  PubMed  Google Scholar 

  224. Zietse, R., Zoutendijk, R. & Hoorn, E. J. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat. Rev. Nephrol. 5, 193–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  225. Mohebbi, N., Mihailova, M. & Wagner, C. A. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am. J. Physiol. Renal Physiol. 297, F499–F509 (2009).

    Article  CAS  PubMed  Google Scholar 

  226. Avila-Poletti, D., De Azevedo, L., Iommi, C., Heldal, K. & Musso, C. G. Hyperchloremic metabolic acidosis in the kidney transplant patient. Postgrad. Med. 131, 171–175 (2019).

    Article  PubMed  Google Scholar 

  227. Ritter, A. & Mohebbi, N. Causes and consequences of metabolic acidosis in patients after kidney transplantation. Kidney Blood Press. Res. 45, 792–801 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies in the laboratory of C.A.W. have been supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.A.W., S.C.L.-G., D.B. and S.W. researched data for the article. C.A.W., S.C.L.-G. and S.W. wrote the article. All authors contributed substantially to discussion of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Carsten A. Wagner.

Ethics declarations

Competing interests

C.A.W. reports honoraria from Advicenne, Kyowa Kirin, Chugai and Medice/Salmon Pharma. D.B. has received honoraria from Advicenne. R.U. is currently employed by AstraZeneca BioPharmaceuticals R&D, Early CVRM (CardioVascular Renal and Metabolism), Cambridge, UK. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks George Schwartz, Francesco Trepiccione and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endolymph

A potassium-rich fluid that is secreted by the stria vascularis and fills the cochlear duct and membranous labyrinth of the inner ear.

Ovalocytosis

Also known as elliptocytosis. A red blood cell deformity with oval-shaped cells that are mostly caused by defects in the cytoskeleton. In South Asian ovalocytosis, anchoring of the cytoskeleton to the membrane is reduced owing to the absence of the AE1-containing protein complex.

Sjögren overlap syndrome

Overlap of autoimmune disorders with anti-SSA(Ro)-positive antibodies that may include features of Sjögren syndrome, systemic lupus erythematosus, myositis, scleroderma, vasculitis and rheumatoid arthritis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, C.A., Unwin, R., Lopez-Garcia, S.C. et al. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 19, 384–400 (2023). https://doi.org/10.1038/s41581-023-00699-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00699-9

  • Springer Nature Limited

This article is cited by

Navigation