Skip to main content
Log in

Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions

  • Lectin Papers
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Citrus pectin (CP) and pH-modified citrus pectin (MCP) are highly branched and non-branched complex polysaccharides, respectively, rich in galactoside residues, capable of combining with the carbohydrate-binding domain of galectin-3. We reported previously that intravenous injection of B16-F1 murine melanoma cells with CP or MCP into syngeneic mice resulted in a significant increase or decrease of lung colonization, respectively (Platt D, Raz A (1992)J Natl Cancer Inst 84:438–42). Here we studied the effects of these polysaccharides on cell-cell and cell-matrix interactions mediated by carbohydrate-recognition. MCP, but not CP, inhibited B16-F1 melanoma cells adhesion to laminin and asialofetuin-induced homotypic aggregation. Both polysaccharides inhibited anchorage-independent growth of B16-F1 cells in semisolid medium, i.e. agarose. These results indicate that carbohydrate-recognition by cell surface galectin-3 may be involved in cell-extracellular matrix interaction and play a role in anchorage-independent growth as well as thein vivo embolization of tumour cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP:

natural citrus pectin

MCP:

pH-modified CP

EHS:

Englebreth-Holm Swarm

CMF-PBS:

Ca2+-and Mg2+-free phosphate-buffered saline, pH 7.2

HRP:

horseradish peroxidase

ABTS:

2,2′-azino-di(3-ethylbenzthiazoline sulfonic acid

DMEM:

Dulbecco's modified Eagle's minimal essential medium

BSA:

bovine serum albumin

References

  1. Sharon N, Lis H (1989)Science 246:227–34.

    Google Scholar 

  2. Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Huges C, Kasai K, Leffler H, Liu FT, Lotan R, Mercurio AM, Monsigny M, Pillai S, Poirer F, Raz A, Rigby PWJ, Rini JM, Wang JL (1994)Cell 76:597–98.

    Google Scholar 

  3. Raz A, Pazerini G, Carmi P (1989)Cancer Res 49:3489–93.

    Google Scholar 

  4. Raz A, Carmi P, Raz T, Hogan V, Mohammed A, Wolman SR (1991)Cancer Res 51:2173–78.

    Google Scholar 

  5. Jia S, Wang JL (1988)J Biol Chem 263:6009–11.

    Google Scholar 

  6. Albrandt K, Orida NK, Liu F-T (1987)Proc Natl Acad Sci USA 84:6859–63.

    Google Scholar 

  7. Cherayil BJ, Chaitovitz S, Wong C, Pillai S (1990)Proc Natl Acad Sci USA 87:7324–28.

    Google Scholar 

  8. Oda Y, Leffler H, Sakakura Y, Kasai K-I, Barondes SH (1991)Gene 99:279–83.

    Google Scholar 

  9. Woo HJ, Lotz MM, Jung JU, Mercurio AM (1991)J Biol Chem 266:18419–22.

    Google Scholar 

  10. Ochieng J, Platt D, Tait L, Hogan V, Raz T, Carmi P, Raz A (1992)Biochemistry 32:4455–60.

    Google Scholar 

  11. Ho MK, Springer TA (1982)J Immunol 128:1221–28.

    Google Scholar 

  12. Raz A, Lotan R (1987)Cancer Met Rev 6:433–52.

    Google Scholar 

  13. Lotan R, Lotan D, Raz A (1985)Cancer Res 45:4349–53.

    Google Scholar 

  14. Meromsky L, Lotan R, Raz A (1986)Cancer Res 46:5270–5.

    Google Scholar 

  15. Lotan R, Raz A (1988)J Cell Biochem 37:107–17.

    Google Scholar 

  16. Platt D, Raz A (1992)J Natl Cancer Inst 84:438–42.

    Google Scholar 

  17. Martin GK, Timple R (1987)Ann Rev Cell Biol 3:57–85.

    Google Scholar 

  18. Hynes RO (1992)Cell 69:11–25.

    Google Scholar 

  19. Sparrow CP, Leffler H, Barondes SH (1987)J Biol Chem 262:7383–90.

    Google Scholar 

  20. Merkle RK, Cummings RD (1988)J Biol Chem 263:16143–49.

    Google Scholar 

  21. Woo HJ, Shaw LM, Messier JM, Mercurio AM (1990)J Biol Chem 265:7097–99.

    Google Scholar 

  22. Ochieng J, Gerold M, Raz A (1992)Biochem Biophys Res Commun 186:1674–80.

    Google Scholar 

  23. Albersheim P, Nevins JD, English PD (1967)Carbohydrate Res 5:340–46.

    Google Scholar 

  24. Oliver MH, Harrison NK, Bishop JE, Cole PJ, Laurent GJ (1989)J Cell Sci 92:513–18.

    Google Scholar 

  25. Raz A, Meromsky L, Lotan R (1986)Cancer Res 46:3667–72.

    Google Scholar 

  26. Raz A, Bucana C, McLellan W, Fidler IJ (1980)Nature (London) 284:363–64.

    Google Scholar 

  27. Fidler IJ (1973)Eur J Cancer 9:223–27.

    Google Scholar 

  28. Kramer RH, McDonald KA, Crowley E, Ramos DM, Damsky CH (1989)Cancer Res 49:393–402.

    Google Scholar 

  29. Barondes SH (1984)Science 223:1259–64.

    Google Scholar 

  30. Stocker M, O'Neill C, Berryman S, Waxman V (1968)Int J Cancer 3:683–93.

    Google Scholar 

  31. Freedman VH, Shin S (1974)Cell 3:355–59.

    Google Scholar 

  32. Weinberg RA (1981)Biochim Biophys Acta 651:25–35.

    Google Scholar 

  33. Raz A, Zhu D, Hogan V, Shah N, Raz T, Karkash R, Pazerini G, Carmi P (1990)Int J Cancer 46:871–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inohara, H., Raz, A. Effects of natural complex carbohydrate (citrus pectin) on murine melanoma cell properties related to galectin-3 functions. Glycoconjugate J 11, 527–532 (1994). https://doi.org/10.1007/BF00731303

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731303

Keywords

Navigation