Skip to main content

Polysaccharides

  • Chapter
  • First Online:
Immunotherapy of Cancer

Abstract

Three kinds of polysaccharides, namely, polysaccharide kureha (PSK), lentinan (LNT), and schizophyllan (SPG), have been approved as anticancer drugs against several kinds of cancer in Japan. All of them are derived from mushrooms, and about 25 years has passed since their clinical approval. Since their mechanisms of action have become elucidated basically and clinically by many investigators, they are discussed here from an immunological point of view. Generally speaking, the immunological mechanisms of polysaccharides are as follows: (1) augmentation of the effect of either chemotherapy or radiotherapy, (2) direct actions on tumor cells, (3) modulation of both innate and acquired immune system, and (4) recovery from immune escape state in tumor-bearing hosts.

Even though polysaccharides might play an important role in immunomodulation under innate or acquired immune system of tumor-bearing host, the understanding of clinical oncologists in regard to polysaccharides is considerably poor. Alternatively the advances in molecular biology and tumor immunology have made a progress in immunotherapy against malignancy, especially in the field of immunological targeting therapy by use of monoclonal antibodies related to immune checkpoint pathway. It is no exaggeration to say that now is the chance for improving both specific and nonspecific immunotherapy against malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vickers AJ, Kuo J, Cassileth BR (2006) Unconventional anticancer agents: a systematic review of clinical trials. J Clin Oncol 24:136–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Zhang Y, Kong H, Fang Y et al (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydrates Diet Fibre 1(1):53–71

    Article  CAS  Google Scholar 

  3. Nio Y, Shiraishi T, Tsubono M et al (1991) In vitro immunimodulating effect of protein-bound polysaccharide, PSK on peripheral blood, regional nodes, and spleen lymphocytes in patients with gastric cancer. Cancer Immunol Immunother 32:335–341

    Article  CAS  PubMed  Google Scholar 

  4. Kariya Y, Okamoto N, Fujimoto N et al (1991) Lysis of fresh human cells by autologous peripheral blood lymphocytes activated PSK. Jpn J Cancer Res 82:1044–1050

    Article  CAS  PubMed  Google Scholar 

  5. Hirose K, Zachariae C, Oppenheim J et al (1990) Induction of gene expression and production of immunomodulating cytokines by PSK in human peripheral blood mononuclear cells. Lymphokine Res 94:475–483

    Google Scholar 

  6. Yamaguchi Y, Minami K, Ohshita A et al (2004) Enhancing effect of PS-K on IL-2-induced lymphocyte activation; possible involvement of antagonistic action against TGF-beta. Anticancer Res 24:639–647

    CAS  PubMed  Google Scholar 

  7. Kanazawa M, Mori Y, Yoshihara K et al (2004) Effect of PSK on the maturation of dendritic cells derived from human peripheral blood monocytes. Immunol Lett 91:229–238

    Article  CAS  PubMed  Google Scholar 

  8. Okuzawa M, Shinohara H, Kobayashi T et al (2002) PSK, a protein-bound polysaccharide, overcomes defective maturation of dendritic cells exposed to tumor–derived factors in vitro. Int J Oncol 20:1189–1195

    CAS  PubMed  Google Scholar 

  9. Asai H, Iijima H, Matsunaga K et al (2008) Protein-bound polysaccharide K augments IL-2 production from murine mesenteric lymph node CD4+ T cells by modulating T cell receptor signaling. Cancer Immunol Immunother 57:1647–1655

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama Y, Osada S, Yamaguchi K et al (2006) Evidence-based biotherapy by use of PSK. Biotherapy 20:396–402 (In Japanese with English abstract)

    CAS  Google Scholar 

  11. Yoshino S, Hazama S, Shimizu R et al (2005) Usefulness in predicting parameters for the selection of responders who received immunochemotherapy with PSK in patients with colorectal cancer. Jpn J Cancer Chemother 32:1568–1570 (In Japanese with English abstract)

    CAS  Google Scholar 

  12. Maruyama S, Akasaka T, Yamada K et al (2009) Protein-bound polysaccharide-K (PSK) directly enhanced IgM production in human B cell line BALL-1. Biomed Pharmacother 63:409–412

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi H, Matsunaga K, Oguchi Y (1995) Antimetastatic effects of PSK (Krestin), a protein-bound polysaccharide obtained from Basidiomycetes: an overview. Cancer Epidemiol Biomarkers Prev 4:275–281

    CAS  PubMed  Google Scholar 

  14. Tamagawa K, Horiuchi T, Wada T et al (2012) Polysaccharide-K (PSK) may suppress surgical stress-induced metastasis in rat colon cancer. Langenbecks Arch Surg 397:475–480

    Article  PubMed  Google Scholar 

  15. Wada T, Wakamatsu Y, Bannai K et al (2002) Suppression mechanism of angiogenesis by PSK. Ann Cancer Res Ther 10:93–105

    Article  CAS  Google Scholar 

  16. Sugiyama Y, Saji S, Kunieda K et al (1996) Effect of PSK on either immunocytes or tumor cells. Biotherapy 10:18–25 (In Japanese with English abstract)

    Google Scholar 

  17. Kono K, Kawaguchi Y, Mizukami Y et al (2008) Protein-bound polysaccharide K partially prevents apoptosis of circulating T cells induced by anti-cancer drugs S-1 in patients with gastric cancer. Oncology 74:143–149

    Article  CAS  PubMed  Google Scholar 

  18. Akagi J, Baba H (2010) PSK may suppress CD57+ T cells to improve survival of advanced gastric cancer patients. Int J Clin Oncol 15:145–152

    Article  CAS  PubMed  Google Scholar 

  19. Shibata M, Nezu T, Kanou H et al (2002) Immunomodulatory effects of low dose cis-diamine-dichloroplatinum (cisplatin) combined with UFT and PSK in patients with advanced colorectal cancer. Cancer Invest 20:166–173

    Article  CAS  PubMed  Google Scholar 

  20. Maehara Y, Tsujitani S, Saeki H et al (2012) Biological mechanism and clinical effect of protein-bound polysaccharide K (Krestin®): review of development and future perspectives. Surg Today 42:8–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Araya S, Nio Y, Hayashi H et al (1994) Various plant-derived polysaccharides augment the expression of HLA on Colo 205 human colonic cancer line. J Jpn Soc Cancer Ther 29:1965–1973 (In Japanese with English abstract)

    CAS  Google Scholar 

  22. Yoshikawa R, Yanagi H, Hashimoto T et al (2004) Gene expression in response to anti-tumor intervention by polysaccharide K (PSK) in colorectal carcinoma cells. Oncol Rep 12:1287–1293

    CAS  PubMed  Google Scholar 

  23. Zhang H, Morisaki T, Nakahara C et al (2003) PSK-mediated NF-κB inhibition augments docetaxel-induced apoptosis in human pancreatic cancer cells NOR-P1. Oncogene 22:2088–2096

    Article  CAS  PubMed  Google Scholar 

  24. Kinoshita J, Fushida S, Harada S et al (2010) PSK enhances the efficacy of docetaxel in human gastric cancer cells through inhibition of nuclear factor-kappa B activation and surviving expression. Int J Oncol 36:593–600

    Article  CAS  PubMed  Google Scholar 

  25. Nakazato H, Koike A, Saji S et al (1994) Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Study group of immunochemo-therapy with PSK for gastric cancer. Lancet 343:1122–1126

    Article  CAS  PubMed  Google Scholar 

  26. Oba K, Teramukai S, Kobayashi M et al (2007) Efficacy of adjuvant immunochemotherapy with polysaccharides K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56:905–911

    Article  CAS  PubMed  Google Scholar 

  27. Mitomi T, Tsuchiya S, Iijima N et al (1993) Randomized controlled study on adjuvant immunochemotherapy with PSK in curatively resected colorectal cancer-5 years follow-up after surgery (a final report). J Jpn Soc Cancer Ther 28:71–83 (In Japanese with English abstract)

    Google Scholar 

  28. Ito K, Nakazato H, Takagi H et al (2004) Long-term effect of 5-fluorouracil enhanced by intermittent administration of polysaccharide K after curative resection of colon cancer. A randomized controlled trial for 7-year follow-up. Int J Colorectal Dis 19:157–164

    Article  PubMed  Google Scholar 

  29. Ohwada S, Ikeya T, Yokomori T et al (2004) Adjuvant immunochemotherapy with oral tegafur/uracil plus PSK in patients with stage II or IIIcolorectal cancer: a randomized controlled study. Br J Cancer 90:1003–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sakamoto J, Morita S, Oba K et al (2006) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother 55:404–411

    Article  CAS  PubMed  Google Scholar 

  31. Konno K, Motomiya M, Oizumi K et al (1998) Effects of protein-bound polysaccharide preparation (PSK) in small cell carcinoma of the lung. JJLC 28:19–28 (In Japanese with English abstract)

    Article  Google Scholar 

  32. Sugiyama Y, Saji S, Yasuda K et al (2001) Tumor dormancy therapy against gastro-enterological cancer by immunotherapy. Jpn J Gastroenterol Surg 34:397–402 (in Japanese with English abstract)

    Article  Google Scholar 

  33. Chihara G, Maeda Y, Hamuro J et al (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature 222:687–688

    Article  CAS  PubMed  Google Scholar 

  34. Chihara G, Hamuro J, Maeda Y et al (1970) Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing (an edible mushroom). Cancer Res 30:2776

    CAS  PubMed  Google Scholar 

  35. Suga T, Shiio T, Maeda Y et al (1984) Antitumor activity of lentinan in murine syngeneic and autochthonous hosts and its suppressive effect on 3-methylcholanthrene-induced carcinogenesis. Cancer Res 44:5132–5137

    CAS  PubMed  Google Scholar 

  36. Jeannin JF, Lagadec P, Pelletier H et al (1988) Regression induced by lentinan, or peritoneal carcinomatoses in a model of colon cancer in rat. Int J Immunopharm 10:855–861

    Article  CAS  Google Scholar 

  37. Chihara G, Hamuro J, Maeda Y et al (1987) Antitumor and metastasis-inhibitory activities of lentinan as an immunomodulator : an overview. Cancer Detect Prev Suppl 1:423–443

    CAS  PubMed  Google Scholar 

  38. Hamuro J, Rollinghoff M, Wagner H (1980) Induction of cytotoxic peritoneal exudate cells by T-cell immune adjuvants of the beta(1 leads to 3) glucan-type lentinan and its analogues. Immunology 39:551–559

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Oka M, Hazama S, Suzuki M et al (1996) In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan. Int J Immunopharmacol 18:211–216

    Article  CAS  PubMed  Google Scholar 

  40. Herlyn D, Kaneko Y, Powe J et al (1985) Monoclonal antibody-dependent murine macrophage-mediated cytotoxicity against human tumors is stimulated by lentinan. Jpn J Cancer Res 76:37–42

    CAS  PubMed  Google Scholar 

  41. Yamasaki K, Sone S, Yamashita T, Ogura T (1989) Synergistic induction of lymphokine (IL-2)-activated killer activity by IL-2 and the polysaccharide lentinan, and therapy of spontaneous pulmonary metastases. Cancer Immunol Immunother 29:87–92

    Article  CAS  PubMed  Google Scholar 

  42. Hamuro J, Takatsuki F, Suga T et al (1994) Synergistic antimetastatic effects of lentinan and interleukin 2 with pre-and post-operative treatments. Jpn J Cancer Res 85:1288–1297

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki M, Higuchi S, Taki Y et al (1990) Induction of endogenous lymphokine-activated killer activity by combined administration of lentinan and interleukin 2. Int J Immunopharmacol 12:613–623

    Article  CAS  PubMed  Google Scholar 

  44. Mushiake H, Tsunoda T, Nukatsuka M et al (2005) Dendritic cells might be one of key factors for eliciting antitumor effect by chemoimmunotherapy in vivo. Cancer Immunol Immunother 54:120–128

    Article  PubMed  Google Scholar 

  45. Hamuro J, Kikuchi T, Takatsuki F, Suzuki M (1996) Cancer cell progression and chemoimmunotherapy—dual effects in the induction of resistance to therapy. Br J Cancer 73:465–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Tani M, Tanimura H, Yamaue H et al (1992) In vitro generation of activated natural killer cells and cytotoxic macrophages with lentinan. Eur J Clin Pharmacol 42:623–627

    Article  CAS  PubMed  Google Scholar 

  47. Arinaga S, Karimine N, Takamuku K et al (1992) Enhanced induction of lymphokine-activated killer activity after lentinan administration in patients with gastric carcinoma. Int J Immunopharmacol 14:535–539

    Article  CAS  PubMed  Google Scholar 

  48. Tani M, Tanimura H, Yamaue H et al (1993) Augmentation of lymphokine-activated killer cell activity by lentinan. Anticancer Res 13:1773–1776

    CAS  PubMed  Google Scholar 

  49. Arinaga S, Karimine N, Nanbara S et al (1992) Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma. Int J Immunopharmacol 14:43–47

    Article  CAS  PubMed  Google Scholar 

  50. Murata Y, Shimamura T, Tagami T et al (2002) The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol 2:673–689

    Article  CAS  PubMed  Google Scholar 

  51. Yoshino S, Tabata T, Hazama S et al (2000) Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers. Anticancer Res 20:4707–4712

    CAS  PubMed  Google Scholar 

  52. Taguchi T, Furue H, Kimura T et al (1985) Results of phase III study of lentinan. Gan To Kagaku Ryoho 12:366–378 (in Japanese with English abstract)

    CAS  PubMed  Google Scholar 

  53. Oba K, Kobayashi M, Matsui T et al (2009) Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Res 29:2739–2746

    PubMed  Google Scholar 

  54. Wang JL, Bi Z, Zou JW, Gu XM (2012) Combination therapy with lentinan improves outcomes in patients with esophageal carcinoma. Mol Med Report 5:745–748

    CAS  Google Scholar 

  55. Nimura H, Mitsumori N, Tsukagoshi S et al (2003) Pilot study of TS-1 combined with lentinan in patients with unresectable or recurrent advanced gastric cancer. Gan To Kagaku Ryoho 30:1289–1296 (in Japanese with English abstract)

    PubMed  Google Scholar 

  56. https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi? function=brows&action=brows& recptno=R000000696&type=summary&language=E

  57. Isoda N, Eguchi Y, Nukaya H et al (2009) Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepatogastroenterology 56:437–441

    CAS  PubMed  Google Scholar 

  58. Shimizu K, Watanabe S, Watanabe S et al (2009) Efficacy of oral administered superfine dispersed lentinan for advanced pancreatic cancer. Hepatogastroenterology 56:240–244

    CAS  PubMed  Google Scholar 

  59. McCormack E, Skavland J, Mujic M et al (2010) Lentinan; hematopoietic immunological, and efficacy studies in a syngeneic model of acute myeloid leukemia. Nutr Cancer 62:574–583

    Article  CAS  PubMed  Google Scholar 

  60. Sullivan R, Smith JE, Rowan NJ (2006) Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol Med 49:159–170

    Article  CAS  PubMed  Google Scholar 

  61. deVere White RW, Hackman RM, Soares SE et al (2002) Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology 60:640–644

    Article  Google Scholar 

  62. Komatsu N, Okubo S, Kikumoto S et al (1969) Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. Gann 60:137–144

    CAS  PubMed  Google Scholar 

  63. Kraus J, Franz G (1992) Immunomodulating effects of polysaccharides from medicinal plants. Adv Exp Med Biol 319:299–308

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki M, Arika T, Amemiya K et al (1982) Cooperative role of T lymphocytes and macrophages in antitumor activity of mice pretreated with schizophyllan (SPG). Jpn J Exp Med 52:59–65

    CAS  PubMed  Google Scholar 

  65. Sakagami Y, Mizoguchi Y, Shin T et al (1988) Effects of an anti-tumor polysaccharide, schizophyllan, on interferon ɤ and interleukin 2 production by peripheral blood mononuclear cells. Biochem Biophys Res Commun 155:650–655

    Article  CAS  PubMed  Google Scholar 

  66. Tsuchiya Y, Igarashi M, Inoue M et al (1989) Cytokin-related immunomodulating activities of an anti-tumor glucan, sizofiran (SPG). J Pharmacobiodyn 12:616–625

    Article  CAS  PubMed  Google Scholar 

  67. Takai Y, Goodman G, Chaplin D et al (1994) Combination therapy of single or fractionated x-rays and schizophyllan (SPG) for murine B-16 melanoma. Int J Oncol 4:385–389

    CAS  PubMed  Google Scholar 

  68. Kobiyama K, Aoshi T, Narita H et al (2014) Nonagonistic Dectin-1 ligand transforms CpG into a multitask nanoparticulate TLR9 agonist. Proc Natl Acad Sci 11:3086–3091

    Article  Google Scholar 

  69. Adachi Y et al (2004) Characterization of beta-glucan recognition site on C-type lectin, dectin-1. Infect Immun 72:4159–4171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Goodridge HS et al (2009) Beta-glucan recognition by the innate immune system. Immunol Rev 230:38–50

    Article  CAS  PubMed  Google Scholar 

  71. Furue H, Uchino H, Orita K et al (1985) Clinical evaluation of schizophyllan (SPG) in advanced gastric cancer (the second report) – a randomized controlled study. Gan To Kagaku Ryoho 12:1272–1277 (In Japanese with English abstract)

    CAS  PubMed  Google Scholar 

  72. Kimura Y, Tojima H, Fukase S et al (1994) Clinical evaluation of sizofilan as assistant immunotherapy in treatment of head and neck cancer. Acta Otolaryngol Suppl 511:192–195

    Article  CAS  PubMed  Google Scholar 

  73. Okamura K, Suzuki M, Chihara T et al (1986) Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer. A randomized controlled study. Cancer 58:865–872

    Article  CAS  PubMed  Google Scholar 

  74. Okamura K, Hamazaki Y, Yajima A et al (1989) Adjuvant immunotherapy: two randomized controlled studies of patients with cervical cancer. Biomed Pharmacother 43:177–181

    Article  CAS  PubMed  Google Scholar 

  75. Miyazaki K, Mizutani H, Katabuchi H et al (1995) Activated (HLA-DR+) T lymphocyte subsets in cervical carcinoma and effects of radiotherapy and immunotherapy with sizofiran on cell-mediated immunity and survival. Gynecol Oncol 56:412–420

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Sugiyama M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sugiyama, Y. (2016). Polysaccharides. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics