Skip to main content
Log in

Inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase fromPseudomonas sp. strain CB406 by 3,4-dihydroxybiphenyl (4-phenylcatechol)

  • Published:
Biodegradation Aims and scope Submit manuscript

Summary

3,4-dihydroxybiphenyl is not a substrate for the 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) from biphenyldegradingPseudomonas sp. strain CB406. It acts as both a reversible inhibitor and a potent inactivator of the enzyme. The inactivation process requires the presence of O2 and can be reversed by the removal of the 3,4-dihydroxybiphenyl followed by incubation of the enzyme in the presence of dithioerythritol and Fe2+ under anaerobic conditions. Two other extradiol dioxygenases behave similarly, the catechol 2,3-dioxygenase (BphE) from strain CB406 and the BphC fromPseudomonas sp. strain LB400. The BphC fromP. testosteroni B-356 also did not cleave 3,4-dihydroxybiphenyl but it was not inactivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C23o:

Catechol 2,3-dioxygenase

34DHBP:

3,4-dihydroxybiphenyl

References

  • Adams RH, Huang CM, Higson FK, Brenner V & Focht DD (1992) Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl. Environ. Microbiol. 58: 647–654

    Google Scholar 

  • Ahmed D, Sylvestre M & Sondossi M (1991) Subcloning ofbph genes fromPseudomonas testosteroni B-356 inPseudomonas putida andEscherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls. Appl. Environ. Microbiol. 57: 2880–2887

    Google Scholar 

  • Assinder SJ & Williams PA (1990) The TOL plasmids: Determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol. 31: 1–69

    Google Scholar 

  • Bagdasarian M, Lurz R, Ruckert B, Franklin FCH, Bagdasarian MM & Timmis KN (1981) Specific purpose plasmid cloning vectors. II. Broad host range, high copy number RSF1010 derived vector, and a host vector system for a gene cloningPseudomonas. Gene 16: 237–247

    Google Scholar 

  • Bartels I, Knackmuss H-J & Reineke W (1984) Suicide inactivation of catechol-2,3-dioxygenase fromPseudomonas putida mt-2 by 3-halocatechols. App. Environ. Microbiol. 47: 500–505

    Google Scholar 

  • Bedard DL & Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20: 86–102

    Google Scholar 

  • Bullock WD, Fernandez JM & Short JM (1987) XL1-Blue: A high efficiency plasmid transformingrecA Escherichia coli strain with β-galactosidase selection. Biotechniques 5: 376–379

    Google Scholar 

  • Carrington B, Lowe A, Shaw LE & Williams PA (1994) The lower pathway operon for benzoate catabolism in biphenyl-utilisingPseudomonas sp. strain IC and the nucleotide sequence of thebphE gene for catechol 2,3-dioxygenase. Microbiology, in press

  • Eltis LD, Hoffman B, Hecht H-J, Lunsdorf H & Timmis KN (1992) Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J. Biol. Chem. 268: 2727–2732

    Google Scholar 

  • Furukawa K & Arimura N (1987) Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyldegradingPseudomonas pseudoalcaligenes andPseudomonas aeruginosa carrying the clonedbphC gene. J. Bacteriol. 169: 924–927

    Google Scholar 

  • Furukawa K & Miyazaki T (1986) Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation inPseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392–398

    Google Scholar 

  • Gibson DT, Cruden DL, Haddock JD, Zylstra GJ & Brand JM (1993) Oxidation of polychlorinated biphenyls byPseudomonas sp. strain LB400 andPseudomonas pseudoalcaligenes KF707. J. Bacteriol. 175: 4561–4564

    Google Scholar 

  • Haddock JD, Nadim LM & Gibson DT (1993) Oxidation of biphenyl by a multicomponent enzyme system fromPseudomonas sp. strain LB400. J. Bacteriol. 175: 395–400

    Google Scholar 

  • Harayama S & Rekik M (1989) Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J. Biol. Chem. 264: 15328–15333

    Google Scholar 

  • Klecka GM & Gibson DT (1981) Inhibition of catechol-2,3-dioxygenase fromPseudomonas putida by 3-chlorocatechol. App. Environ. Microbiol. 41: 1159–1165

    Google Scholar 

  • Kuhm AE, Stolz A & Knackmuss H-J (1991) Metabolism of naphthalene by the biphenyl-degrading bacteriumPseudomonas paucimobilis Q1. Biodegradation 2: 115–120

    Google Scholar 

  • Kuhm AE, Stolz A, Ngai KL & Knackmuss H-J (1991b) Purification and characterisation of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalene sulfonic acids. J. Bacteriol. 173: 3795–3802

    Google Scholar 

  • Lloyd-Jones G, Ogden RC & Williams PA (1994) Recombination of thebph (biphenyl) catabolic genes from plasmid pWW100 and their deletion during growth on benzoate. Appl. Env. Microbiol. 60: 691–696

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randel RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Mondello FJ (1989) Cloning and expression inEscherichia coli ofPseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732

    Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). Meth. Enzymol. 17A: 522–525

    Google Scholar 

  • Nozaki M, Ono K, Nakazawa T, Kotani S & Hayaishi O (1968) Metapyrocatechase II. The role of iron and sulfhydryl groups. J. Biol. Chem. 243: 2682–2690

    Google Scholar 

  • Polissi A & Harayama S (1993) In vivo reactivation of catechol 2,3-dioxygenase by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J. 12: 3339–3347

    Google Scholar 

  • Ramos JL, Wasserfallen A, Rose K & Timmis KN (1987) Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235: 593–596

    Google Scholar 

  • Sondossi M, Sylvestre M & Ahmed D (1992) Effects of chlorobenzoate transformation on thePseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl. Environ. Microbiol. 58: 485–495

    Google Scholar 

  • Taira K, Hayase N, Arimura N, Yamashita S, Miyazaki T & Furukawa K (1988) Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain ofPseudomonas paucimobilis Q1. Biochem. 27: 3990–3996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd-Jones, G., Ogden, R.C. & Williams, P.A. Inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase fromPseudomonas sp. strain CB406 by 3,4-dihydroxybiphenyl (4-phenylcatechol). Biodegradation 6, 11–17 (1995). https://doi.org/10.1007/BF00702294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00702294

Keywords

Navigation