Skip to main content
Log in

Dioxygenases of chlorobiphenyl-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A max :

maximal activity at saturation with substrate

BDO:

benzoate 1,2-dioxygenase

Cat:

catechol

Cat-1,2-DO:

catechol 1,2-dioxygenase

Cat-2,3-DO:

catechol 2,3-dioxygenase

4-CCat:

4-chlorocatechol

3,5and 4,5-DCCat:

3,5and 4,5dichlorocatechols

K i :

inhibition constant

K m :

Michaelis constant

MALDI-TOF:

matrix-assisted laser desorption/ionization-time of flight mass spectrometry

3MCat and 4MCat:

3and 4-methylcatechol

OD:

optical density

PCA:

protocatechuate

PCA-3,4-DO:

protocatechuate 3,4-dioxygenase

pHBA:

para-hydroxybenzoate

References

  1. Pieper, D. H. (2005) Aerobic degradation of polychlorinated biphenyls, Appl. Microbiol. Biotechnol., 67, 170–191.

    Article  CAS  PubMed  Google Scholar 

  2. Pieper, D. H., Gonzalez, B., Camara, B., Perez-Pantoja, D., and Reineke, W. (2010) Aerobic degradation of chloroaromatics, in Handbook of Hydrocarbon and Lipid Microbiology ( Timmis, K. N., ed.) Springer-Verlag, BerlinHeidelberg, pp. 839-864.

  3. Du, L., Ma, L., Qi, F., Zheng, X., Jiang, C., Li, A., Wan, X., Liu, S.-J., and Li, S. (2016) Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum, J. Biol. Chem., 291, 6583–6594.

    Article  CAS  PubMed  Google Scholar 

  4. Field, J. A., and Sierra-Alvarez, R. (2008) Microbial transformation of chlorinated benzoates, Environ. Sci. Biotechnol., 7, 191–210.

    Article  CAS  Google Scholar 

  5. Neidle, E. L., Hartnett, C., Ornston, L. N., Bairoch, A., Rekik, M., and Harayama, S. (1991) Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases, J. Bacteriol., 173, 5385–5395.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Parales, R. E., and Resnick, S. M. (2006) Aromatic ring hydroxylating dioxygenases, Pseudomonas, 4, 287–340.

    Article  Google Scholar 

  7. Kweon, O., Kim, S. J., Freeman, J. P., Song, J., Baek, S., and Cerniglia, C. E. (2010) Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1, mBio, 1, pii: e00135–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, M., Yi, P., Liu, Q., Pan, Y., and Qian, G. (2013) Biodegradation of benzoate by protoplast fusant via intergeneric protoplast fusion between Pseudomonas putida and Bacillus subtilis, Int. Biodeterior. Biodegrad., 85, 577–582.

    Article  CAS  Google Scholar 

  9. Zaar, A., Eisenreich, W., Bacher, A., and Fuchs, G. (2001) A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus, J. Biol. Chem., 276, 24997–25004.

    Article  CAS  PubMed  Google Scholar 

  10. Rather, L. J., Knapp, B., Haehnel, W., and Fuchs, G. (2010) Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation, J. Biol. Chem., 285, 20615–20624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Solyanikova, I. P., Emelyanova, E. V., Shumkova, E. S., Egorova, D. O., Korsakova, E. S., Plotnikova, E. G., and Golovleva, L. A. (2015) Peculiarities of the degradation of benzoate and its chloroand hydroxy-substituted analogs by actinobacteria, Int. Biodeterior. Biodegrad., 100, 155–164.

    Article  CAS  Google Scholar 

  12. Solyanikova, I. P., Emelyanova, E. V., Borzova, O. V., and Golovleva, L. A. (2016) Benzoate degradation by Rhodococcus opacus 1CP after a dormancy: characterization of dioxygenases involved in the process, J. Environ. Sci. Health B, 5, 182–191.

    Article  Google Scholar 

  13. Grund, E., Knorr, C., and Eichenlaub, R. (1990) Catabolism of benzoate and monohydroxylated benzoates by Amycolatopsis and Streptomyces spp., Appl. Environ. Microbiol., 56, 1459–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Plotnikova, E. G., Rybkina, D. O., Anan’ ina, L. N., Yastrebova, O. V., and Demakov, V. A. (2006) Characterization of microorganisms isolated from technogenic soils of the Kama region, Russ. J. Ecol., 4, 233–240.

    Article  Google Scholar 

  15. Gorlatov, S. N., Maltseva, O. V., Shevchenko, V. I., and Golovleva, L. A. (1989) Degradation of chlorophenols by a culture of Rhodococcus erythropolis, Mikrobiologiya, 58, 647–651.

    Google Scholar 

  16. Schlomann, M., Schmidt, E., and Knackmuss, H.-J. (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria, J. Bacteriol., 172, 51125118.

    Google Scholar 

  17. Loh, K.-C., and Chua, S.-S. (2002) Ortho pathway of benzoate degradation in Pseudomonas putida: induction of meta pathway at high substrate concentrations, Enzyme Microb. Technol., 30, 620–626.

    Article  CAS  Google Scholar 

  18. Kim, Y. H., Cho, K., Yun, S.-H., Kim, J. Y., Kwon, K.-H., Yoo, J. S., and Kim, S. I. (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis, Proteomics, 6, 13011318.

    Google Scholar 

  19. Park, S. H., Kim, J. W., Yun, S. H., Leem, S. H., Kahng, H. Y., and Kim, S. I. (2006) Characterization of ß-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach, J. Microbiol., 44, 632–640.

    CAS  PubMed  Google Scholar 

  20. Patrauchan, M. A., Florizone, C., Dosanjh, M., Mohn, W. W., Davies, J., and Eltis, L. D. (2005) Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence, J. Bacteriol., 187, 40504063.

    Article  Google Scholar 

  21. Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A., and Micklem, G. (2015) Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes, Genome Biol., 16, 50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Polz, M. F., Alm, E. J., and Hanage, W. P. (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure, Trends Genet., 29, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scholl, E. H., Thorne, J. L., McCarter, J. P., and Bird, D. M. (2003) Horizontally transferred genes in plant parasitic nematodes: a high-throughput genomic approach, Genome Biol., 4, R39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Keeling, P. J., and Palmer, J. D. (2008) Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet., 9, 605618.

    Article  Google Scholar 

  25. Foster, A., Barnes, N., Speight, R., and Keane, M. A. (2013) Genomic organization, activity and distribution analysis of the microbial putrescine oxidase degradation pathway, System. Appl. Microbiol., 36, 457–466.

    CAS  Google Scholar 

  26. Dunning Hotopp, J. C. (2011) Horizontal gene transfer between bacteria and animals, Trends Genet., 27, 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Syvanen, M. (2012) Evolutionary implications of horizontal gene transfer, Annu. Rev. Genet., 46, 341–358.

    Article  CAS  PubMed  Google Scholar 

  28. Coleman, M. L., and Chisholm, S. W. (2010) Ecosystemspecific selection pressures revealed through comparative population genomics, Proc. Natl. Acad. Sci. USA, 107, 18635–18639.

    Article  Google Scholar 

  29. Solyanikova, I. P., Plotnikova, E. G., Shumkova, E. S., Robota, I. V., Prisyazhnaya, N. V., and Golovleva, L. A. (2014) Chloromuconolactone dehalogenase ClcF of actinobacteria, J. Environ. Sci. Health B, 49, 422–431.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Solyanikova.

Additional information

Original Russian Text © I. P. Solyanikova, O. V. Borzova, E. V. Emelyanova, E. S. Shumkova, N. V. Prisyazhnaya, E. G. Plotnikova, L. A. Golovleva, 2016, published in Biokhimiya, 2016, Vol. 81, No. 9, pp. 1239-1253. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-150, August 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyanikova, I.P., Borzova, O.V., Emelyanova, E.V. et al. Dioxygenases of chlorobiphenyl-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes. Biochemistry Moscow 81, 986–998 (2016). https://doi.org/10.1134/S000629791609008X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791609008X

Keywords

Navigation