Skip to main content
Log in

Modelling radiation quantities and photolysis frequencies in the troposphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

STAR (System for Transfer of Atmospheric Radiation) was developed to calculate accurately and efficiently the irradiance, the actinic flux, and the radiance in the troposphere. Additionally a very efficient calculation scheme to computer photolysis frequencies for 21 different gases was evolved. STAR includes representative data bases for atmospheric constituents, especially aerosol particles. With this model package a sensitivity study of the influence of different parameter on photolysis frequencies in particular of O3 to Singlet D oxygen atoms, of NO2, and of HCHO was performed. The results show the quantitative effects of the influence of the solar zenith angle, the ozone concentration and vertical profile, the aerosol particles, the surface albedo, the temperature, the pressure, the concentration of NO2, and different types of clouds on the photolysis frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I A(τ, λ):

actinic flux

I H(τ, λ):

irradiance

L(τ, ω, μ, λ):

radiance

λ :

wavelength

ω :

azimuth angle

μ :

cosine of zenith angle

μ s :

cosine of solar zenith angle

τ :

optical depth

β s :

scattering coefficient

β c :

extinction coefficient

ε o :

single scattering albedo

p mix :

mixed phase function

g mix :

mixed asymmetry factor

J gas :

photolysis frequency

References

  • d'Almeida, G., Koepke, P., and Shettle, E., 1991,Atmospheric Aerosols Global Climatology and Radiative Characteristics, A. Deepak, Hampton, Va.

    Google Scholar 

  • Bowker, D. E., Davis, R. E., Myrick, D. L., Stacy, K., and Jones, W. T., 1985, Spectral reflectances of natural targets for use in remote sensing studies, NASA Ref. Publ. 1139.

  • Bruehl, C. and Crutzen, P. J., (1989). On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation,Geophys. Res. Lett. 16, 703.

    Google Scholar 

  • Cacciani, M., di Sarra, A., Fiocco, G., and Amoruso, A., 1989, Absolute determination of the cross sections of ozone in the wavelength region 339–355 nm at temperatures 220–293 K,J. Geophys. Res. 94 (D6), 8485–8490.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987, A three-dimensional Eulerian acid deposition model: physical concepts and formation,J. Geophys. Res. 92, 14681–14700.

    Google Scholar 

  • Davidson, J. A., Cantrell, C. A., McDaniel, A. H., Shetter, R. E., Madronich, S., and Calvert, J. G., 1988, Visible-Ultraviolet Absorption Cross Sections for NO2 as a Function of Temperature,J. Geophys. Res. 93, 7105–7112.

    Google Scholar 

  • Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980, Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere,Adv. Environ. Sci. Technol. 10, 369–459.

    Google Scholar 

  • Deutscher Wetterdienst (DWD), 1992a, Meteorologisches Observatorium Hohenpeissenberg, Sonderbeobachtungen: Ergebnisse der aerologischen und bodennahen Ozonmessungen im 1. Halbjahr 1991, Nr. 65, Hohenpeissenberg, 1992.

  • Deutscher Wetterdienst (DWD), 1992b, Meteorologisches Observatorium Hohenpeissenberg, Sonderbeobachtungen: Ergebnisse der aerologischen und bodennahen Ozonmessungen im 2. Halbjahr 1991, Nr. 66, Hohenpeissenberg, 1992.

  • Dunker, A. M., 1980, The response of an atmospheric reaction-transport model to changes in input function,Atmos. Environ. 14, 671–679.

    Google Scholar 

  • Eaton, F. D. and Dirmhirn, I., 1979, Selected irradiance indicatrices of natural surfaces and their effects on albedo,Appl. Opt. 18, 994 pp.

    Google Scholar 

  • Finlayson-Pitts, B. J. and Pitts, J. N., 1986,Atmospheric Chemistry: Fundamentals and Experimental Techniques, Wiley, New York.

    Google Scholar 

  • Fiocco, G., Mungnai, A., and Forlizzi, W., 1978), Effects of radiation scattered by aerosols on the photodissociation of ozone,J. Atmos. Terr. Phys. 40, 949–961.

    Google Scholar 

  • Liu, M. K., Whitney, D. C., Seinfeld, J. H., and Roth, P. M., 1976, Continued research in mesoscale air pollution simulation modelling: I Assessment of prior model evaluation studies and analysis of model validity and sensitivity, EPA-600/4-76-016a, U.S. Environmental Protection Agency, Research Triangle Park, NC.

    Google Scholar 

  • Madronich, S., 1987, Photodissociation in the atmosphere, 1, Actinic flux and the effects of ground reflections and clouds,J. Geophys. Res. 92 (D8), 9740–9752.

    Google Scholar 

  • Madronich, S. and Weller, G., 1990, Numerical Integration Errors in Calculated Tropospheric Photodissociation Rate Coefficients,J. Atmos. Chem. 10, 289–300.

    Google Scholar 

  • McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., and Garing, J. S., 1972, Optical properties of the atmosphere, AFCRL-720497, Environ. Res. Paper p. 411.

  • Mentall, J. E., Frederick, J. E., and Herman, J. R., 1981, Solar Irradiances from 200 to 330 nm,J. Geophys. Res. 86, 9,881–9,884.

    Google Scholar 

  • Molina, L. T. and Molina, M. J., 1986, Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range,J. Geophys. Res. 91, 14,501–14,508.

    Google Scholar 

  • Nagel, M. R., Quenzel, H., Kweta, W., and Wendling, R., 1978,Daylight Illumination- Colour-Contrast Tables for Full-Form Objects, Academic Press, San Diego, Calif.

    Google Scholar 

  • Nakajima, T. and Tanaka, M., 1986, Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,J. Quant. Spectrosc. Radiat. Transfer 35, 13–21.

    Google Scholar 

  • Nakajima, T. and Tanaka, M., 1988, Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,J. Quant. Spectrosc. Radiat. Transfer 40, 51–69.

    Google Scholar 

  • NASA JPL, 1990, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling Evaluation No. 9, JPL Publ. 90-1.

  • Neckel, H. and Labs, D., 1984, The solar radiation between 330 and 1250 nm,Solar Phys. 90, 205–258.

    Google Scholar 

  • Peterson, J. T., 1976, Calculated actinic fluxes (290–700 nm) for Air Pollution Photochemistry Applications, U.S. Environm. Protection Agency Rep. EPA-600/4-76,025.

  • Roeth, E-P., 1986, Description of a one-dimensional model for atmospheric chemistry, Berichte der Kernforschungsanlage Juelich, 2098.

  • Ruggaber, A., Forkel, R., and Dlugi, R., 1993, Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations,J. Geophys. Res. 98, 1151–1162.

    Google Scholar 

  • Schneider, W., Moortgat, G. K., Tyndall, G. S., and Burrows, J. P., 1987, Absorption cross-sections of NO2 in the UV and visible region (200–700 nm) at 298 K,J. Photochem. Photobiol. 40, 195–217.

    Google Scholar 

  • Seinfeld, J. H., 1988, Ozone Air Quality Models: A critical review,J. Air Poll. Control Assoc. 38, 616–645.

    Google Scholar 

  • Shaw, G.E., 1976, Optical absorption in the visible,J. Geophys. Res. 81, 5791–5792.

    Google Scholar 

  • Stamnes, K., Tsay, S.-C., Wiscombe, W. J., and Jayaweera, K., 1988, An improved, numerically stable computer code for discrete-ordinate-method radiative transfer in scattering and emitting layered media, NASA Rep.

  • Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X., 1990, The second generation regional acid deposition model: Chemical mechanism for regional air quality modelling,J. Geophys. Res. 95, 16343–16367.

    Google Scholar 

  • Tampieri, F. and Tomasi, c., 1976, Size distribution models of fog and cloud droplets in terms of modified gamma function,Tellus 28, 333–347.

    Google Scholar 

  • Teillet, P. M., 1990, Rayleigh optical depth comparisons from various sources,Appl. Opt. 29(13), 1897–1900.

    Google Scholar 

  • Thompson, A. M., 1984, The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere,J. Geophs. Res. 89, 1341–1349.

    Google Scholar 

  • Thompson, A. M., Stewart, R. W., Owens, M. A., and Herwehe, J. A., 1989, Sensitivity of tropospheric oxidants to global chemical and climate change,Atmos. Environm. 23, 519–532.

    Google Scholar 

  • Thompson, A. M. and Stewart, R. W., 1991, Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model,J. Geophys. Res. 96, 89–103.

    Google Scholar 

  • Tsay, S-C. and Stamnes, K., 1992, Ultraviolet radiation in the Arctic: The impact of potential ozone depletions and cloud effects,J. Geophys. Res. 97, 7829–7840.

    Google Scholar 

  • Wege, K., Claude, H., and Hartmannsgruber, R., 1983, Several results from 20 years of ozone observations at Hohenpeissenberg, in R. Bojkov and P. Fabian (eds.),Proc. Quadr. Ozone Sympos. 1988, A. Deepak Publ. Hampton U.S.A., pp. 109–112.

    Google Scholar 

  • World Meteorological Organisation (WMO), 1985, Atmospheric ozone 1985, Global ozone research and monitoring project, Rep. 16, Geneva.

  • Zdunkowski, W. G., Welch, R. M., and Korb, G., 1980, An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds,Beitr. Phys. Atmos. 53(2), 147–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggaber, A., Dlugi, R. & Nakajima, T. Modelling radiation quantities and photolysis frequencies in the troposphere. J Atmos Chem 18, 171–210 (1994). https://doi.org/10.1007/BF00696813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696813

Key words

Navigation