Skip to main content

Mie Theory: A Review

  • Chapter
  • First Online:
The Mie Theory

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 169))

Abstract

In optical particle characterisation and aerosol science today light scattering simulations are regarded as an indispensable tool to develop new particle characterisation techniques or in solving inverse light scattering problems. Mie scattering and related computational methods have evolved rapidly during the past decade such that scattering computations for spherical scatterers a few order of magnitudes larger, than the incident wavelength can be easily performed. This significant progress has resulted from rapid advances in computational algorithms developed in this field and from improved computer hardware. In this chapter the history and a review of the recent progress of Mie scattering and Mie-related light scattering theories and available computational programs is presented. We will focus on Mie scattering theories but as there is much overlap to related scattering theories they will also be mentioned where appropriate. Short outlines of the various methods are given. This review is of course biased by my interest in optical particle characterisation and my daily reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.I. Mishchenko, L.D. Travis, Bull. Am. Meteorol. Soc. 89(12), 1853 (2008)

    ADS  Google Scholar 

  2. M.I. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1210 (2009)

    ADS  Google Scholar 

  3. U. Kreibig, Physik in unserer Zeit 39(6), 281 (2008)

    ADS  Google Scholar 

  4. W. Hergert, T. Wriedt (eds.), Mie Theory 1908–2008 (Universität Bremen, Bremen, 2008)

    Google Scholar 

  5. T. Stübinger, U. Köhler, W. Witt, U. Köhler, W. Witt, in Particulate Systems Analysis 2008 (Stratford-upon-Avon, UK, 2008)

    Google Scholar 

  6. T. Wriedt, in Mie Theory 1908–2008, ed. by W. Hergert, T. Wriedt (Universität Bremen. Bremen, 2008), pp. 17–21

    Google Scholar 

  7. H. Horvath, J. Quant. Spectrosc. Radiat. Transf. 110(11), 783 (2009)

    ADS  Google Scholar 

  8. H. Horvath, J. Quant. Spectrosc. Radiat. Transf. 110(11), 787 (2009)

    ADS  Google Scholar 

  9. V. Garbin, G. Volpe, E. Ferrari, M. Versluis, D. Cojoc, D. Petrov, New J. Phys. 11(1), 013046 (2009)

    ADS  Google Scholar 

  10. M. Kolwas, Comput. Methods Sci. Technol. 16 Special Issue (2), 108 (2010)

    Google Scholar 

  11. T. Wriedt, Part.& Part. Syst. Charact. 15(2), 67 (1998)

    Google Scholar 

  12. F.M. Kahnert, J. Quant. Spectrosc. Radiat. Transf. 79–80, 775 (2003)

    Google Scholar 

  13. G. Veronis, S. Fan, in Surface Plasmon Nanophotonics (Springer, Dortrecht, 2007), pp. 169–182

    Google Scholar 

  14. G.A. Niklasson, W.E. Vargas, Encyclopedia of Surface and Colloid Science, 2nd edn. pp. 3346–3358 (2006)

    Google Scholar 

  15. J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz, Acc. Chem. Res. 41(12), 1710 (2008)

    Google Scholar 

  16. C.J. Bouwkamp, Rep. Prog. Phys. 17(1), 35 (1954)

    MathSciNet  ADS  Google Scholar 

  17. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J. F. Javier García de Abajo, Chem. Soc. Rev. (2008)

    Google Scholar 

  18. V. Veselago, L. Braginsky, V. Shklover, C. Hafner, J. Comput. Theor. Nanosci. 3, 189 (2006)

    Google Scholar 

  19. G. Mie, Annalen der Physik 330(3), 377 (1908)

    ADS  Google Scholar 

  20. R. Gans, Annalen der Physik 381(1), 29 (1925)

    ADS  Google Scholar 

  21. H. Blumer, Zeitschrift für Physik 32, 119 (1925)

    ADS  Google Scholar 

  22. N.A. Logan, Proc. IEEE pp. 773–785 (1965)

    Google Scholar 

  23. A. Clebsch, Journal für Mathematik, Band 61, Heft 3, 195 (1863)

    Google Scholar 

  24. L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind 1, 1 (1890)

    Google Scholar 

  25. L. Lorenz, Oeuvres scientifiques de L. Lorenz. Revues et annotées par H. Valentiner (Libraire Lehmann& Stage, Copenhague, 1898), chap. Sur la lumière réfléchie et réfractée par une sphère (surface) transparente., pp. 403–529

    Google Scholar 

  26. P. Debye, Annalen der Physik, Vierte Folge, Band 30. No. 1, 57 (1909)

    Google Scholar 

  27. W.T. Grandy, Scattering of waves from large spheres (Cambridge Univ. Press, Cambridge, 2000)

    Google Scholar 

  28. E. Davis, G. Schweiger, The Airborne Microparticle (Springer, Berlin, Heidelberg, 2002)

    Google Scholar 

  29. G. Burlak, The Classical and Quantum Dynamics of the Multispherical Nanostructures (Imperial College Press, London, 2004)

    Google Scholar 

  30. M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation: and other electromagnetic radiation (Academic Press, New York, London, 1969)

    Google Scholar 

  31. P. Pesic, Sky in a bottle (MIT Press, Cambridge, 2005)

    Google Scholar 

  32. O. Keller, Prog. Opt. 43, 257 (2002)

    Google Scholar 

  33. H. Kragh, Appl. Opt. 30(33), 4688 (1991)

    ADS  Google Scholar 

  34. M. Cardona, W. Marx, Physik Journal 11, 27 (2004)

    Google Scholar 

  35. W. Marx, Phys. Unserer Zeit, pp. 34–39 (2007)

    Google Scholar 

  36. B.F. Bowman, www.biochem.mpg.de/iv/AgFN_Bibliometrie.pdf. accessed 15. Aug. 2008. (2008)

  37. I. Fränz-Gotthold, M. von Laue, Annalen der Physik 425(3), 249 (1938)

    ADS  Google Scholar 

  38. H. Bateman, Cambridge University Press, 1915. http://www.archive.org/download/ mathematicalanal00baterich/mathematicalanal00baterich.pdf (1915)

  39. G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions. Tech. Rep. Library Translation 1873, RAE-Lit-Trans-1873, Royal Aircraft Establishment (1976). http://diogenes.iwt.uni-bremen.de/vt/laser/papers/RAE-LT1873-1976-Mie-1908-translation.pdf

  40. G. Mie, Contributions on the optics of turbid media, particularly colloidal metal solutions – Translation. Technical report. SAND78-6018. National Translation Center, Chicago, ILL, Translation 79–21946, Sandia Laboratories, Albuquerque, New Mexico (1978)

    Google Scholar 

  41. G. Mie, Consideraciones sobre la óptica de los medios turbios, especialmente soluciones coloidales. Traducción: Arturo Quirantes Sierra. Technical report http://www.ugr.es/aquiran/ciencia/mie/mie1908_spanish.pdf, Universidad de Granada (2007)

  42. A. Quirantes, http://www.ugr.es/aquiran/mie.htm. (2007)

  43. J.A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)

    MATH  Google Scholar 

  44. W.W. Hansen, Phys. Rev. 47, 139 (1935)

    ADS  Google Scholar 

  45. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, 1999)

    Google Scholar 

  46. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)

    Google Scholar 

  47. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Berlin, 1983)

    Google Scholar 

  48. E.C.L. Ru, P.G. Etchegoin, Prinziples of surface-enhanced Raman spectroscopy and related plasmonic effects (Elsevier, Amsterdam, 2009)

    Google Scholar 

  49. S.V. (ed.), Thermal Nanosystems and Nanomaterials (Springer, Heidelberg, 2009) Mie Theory and the Discrete Dipole Approximation, Franck Enguehard, 2009

    Google Scholar 

  50. R.H. Giese, Elektron. Rechenanl. 3, 240 (1961)

    MATH  Google Scholar 

  51. J. Dave, Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere, Rep. No. 320–3237. Technical report, IBM Scientific Center, Palo Alto, Calif. (1968)

    Google Scholar 

  52. C.D. Cantrell, Numerical methods for the accurate calculation of spherical Bessel functions and the location of Mie resonances. Tech. Rep. http://www.utdallas.edu/cantrell/ee6481/lectures/bessres1.pdf, Center for Applied Optics, University of Texas at Dallas, Richardson, TX, USA (1988). http://www.utdallas.edu/cantrell/ee6481/lectures/bessres1.pdf

  53. D. Deirmendjann, The Electromagnetic Scattering on Spherical Polydispersion (Elsevier, New York, 1969)

    Google Scholar 

  54. D. Deirmendjann, R. Clasen, W. Viezee, J. Opt. Soc. Am. 51(6), 620 (1961)

    ADS  Google Scholar 

  55. H.J. Metz, H.K. Dettmar, Kolloid-Zeitschrift und Zeitschrift für Polymere 192(1–2), 107 (1963)

    Google Scholar 

  56. B. Maguire, J. Aerosol Sci. 2(4), 417 (1971)

    Google Scholar 

  57. W. Wiscombe, Mie scattering calculations: Advances in technique and fast, vector-speed computer codes. Technical report, Technical Note NCAR/TN-140+STR, National Center for, Atmospheric Research (1979)

    Google Scholar 

  58. W.J. Wiscombe, Appl. Opt. 19(9), 1505 (1980)

    ADS  Google Scholar 

  59. W.J. Lentz, Appl. Opt. 15(3), 668 (1976)

    ADS  Google Scholar 

  60. G. Grehan, G. Gouesbet, Appl. Opt. 18(20), 3489 (1979)

    ADS  Google Scholar 

  61. A.R. Jones, J. Phys. D: Appl. Phys. 16(3), L49 (1983)

    ADS  Google Scholar 

  62. G.G. Siu, L. Cheng, J. Opt. Soc. Am. B 19(8), 1922 (2002)

    ADS  Google Scholar 

  63. H. Du, Appl. Opt. 43(9), 1951 (2004)

    ADS  Google Scholar 

  64. J. Shen, PIERS Online 1, 691 (2005)

    Google Scholar 

  65. A. Gogoi, A. Choudhury, G. Ahmed, J. Mod. Opt. 57, 2192 (2010)

    ADS  MATH  Google Scholar 

  66. W.C. Mundy, J.A. Roux, A.M. Smith, J. Opt. Soc. Am. 64(12), 1593 (1974)

    ADS  Google Scholar 

  67. C.F. Bohren, D.P. Gilra, J. Colloid Interface Sci. 72(2), 215 (1979)

    Google Scholar 

  68. M. Quinten, J. Rostalski, Part.& Parti. Syst. Charact. 13(2), 89 (1996)

    Google Scholar 

  69. I.W. Sudiarta, P. Chylek, J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 709 (2001)

    ADS  Google Scholar 

  70. J.R. Frisvad, N.J. Christensen, H.W. Jensen, ACM Trans. Graph. 26 (2007)

    Google Scholar 

  71. W. Sun, N.G. Loeb, Q. Fu, J. Quant. Spectrosc. Radiat. Transf. 83(3–4), 483 (2004)

    ADS  Google Scholar 

  72. A.L. Aden, M. Kerker, J. Appl. Phys. 22(10), 1242 (1951)

    MathSciNet  ADS  MATH  Google Scholar 

  73. A.Q. Sierra, http://www.ugr.es/aquiran/codigos.htm (2007)

  74. O.B. Toon, T.P. Ackerman, Appl. Opt. 20(20), 3657 (1981)

    ADS  Google Scholar 

  75. T. Kaiser, G. Schweiger, Comput. Phys. 7(6), 682 (1993)

    ADS  Google Scholar 

  76. L. Kai, P. Massoli, Appl. Opt. 33(3), 501 (1994)

    ADS  Google Scholar 

  77. Z.S. Wu, L.X. Guo, K.F. Ren, G. Gouesbet, G. Gréhan, Appl. Opt. 36(21), 5188 (1997)

    ADS  Google Scholar 

  78. L. Liu, H. Wang, B. Yu, Y. Xua, J. Shen, China Part. 5, 230 (2007)

    Google Scholar 

  79. R.J. Martin, J. Mod. Opt. 40(12), 2467 (1993)

    ADS  Google Scholar 

  80. R. Martin, J. Mod. Opt. 42(1), 157 (1995)

    ADS  Google Scholar 

  81. M. Kerker, C.L. Giles, D.S.Y. Wang, J. Opt. Soc. Am. 72, 1826 (1982)

    ADS  Google Scholar 

  82. M. Kerker, D.S. Wang, C.L. Giles, J. Opt. Soc. Am. 73(6), 765 (1983)

    ADS  Google Scholar 

  83. M.E. Milham, Electromagnetic scattering by magnetic spheres: theory and algorithms. Technical report ERDEC-TR-207, ADA289798, Edgewood Research Development and Engineering Center (1994)

    Google Scholar 

  84. R.J. Tarento, K.H. Bennemann, P. Joyes, J. Van de Walle, Phys. Rev. E 69(2), 026606 (2004)

    ADS  Google Scholar 

  85. C. Mätzler, Matlab functions for mie scattering and absorption. Technical report, Research Report No. 2002–08, Institute of Applied Physics, University of Bern (2002)

    Google Scholar 

  86. A. Lakhtakia, V.K. Varadan, V.V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer, Berlin, 1989)

    Google Scholar 

  87. W.S. Weiglhofer, A (Introduction to complex mediums for optics and electromagnetics (SPIE Press, Lakhtakia, 2003)

    Google Scholar 

  88. C.F. Bohren, Chem. Phys. Lett. 29, 458 (1974)

    ADS  Google Scholar 

  89. C.F. Bohren, J. Chem. Phys. 62(4), 1566 (1975)

    ADS  Google Scholar 

  90. C.F. Bohren, Light scattering by optically active particles (University of Arizona, Tucson 1975)

    Google Scholar 

  91. M. Hinders, B. Rhodes, Il Nuovo Cimento D 14, 575 (1992). 10.1007/BF02462344

    Google Scholar 

  92. B. Stout, M. Neviére, E. Popov, J. Opt. Soc. Am. A 23(5), 1111 (2006)

    ADS  Google Scholar 

  93. Y.L. Geng, X.B. Wu, L.W. Li, B.R. Guan, Phys. Rev. E 70(5), 056609 (2004)

    ADS  Google Scholar 

  94. C.W. Qiu, B. Luk’yanchuk, J. Opt. Soc. Am. A 25(7), 1623 (2008)

    ADS  Google Scholar 

  95. E. Kennaugh, Proc. Inst. Radio Eng. 49, 380 (1961)

    Google Scholar 

  96. A. Itoh, T. Hosono, IEICE Trans. Electron. E 75C(1), 107 (1992)

    Google Scholar 

  97. A. Itoh, T. Hosono, Electron. Commun. Japan (Part II: Electronics) 78(11), 10 (1995)

    Google Scholar 

  98. H. Bech, A. Leder, Optik—International Journal for Light and Electron Optics 117(1), 40 (2006)

    Google Scholar 

  99. H.E. Albrecht, H. Bech, N. Damaschke, M. Feleke, Optik 100, 118 (1995)

    Google Scholar 

  100. U. Kreibig, M. Vollmer, Opt. properties met. clust. (Springer, Berlin, 1995)

    Google Scholar 

  101. U. Kreibig, Appl. Phys. B: Lasers Opt. 93(1), 79 (2008)

    ADS  Google Scholar 

  102. M. Quinten, Optical Properties of Nanoparticle Systems, Mie and Beyond (Wiley-VCH, Berlin, 2011)

    Google Scholar 

  103. F. Möglich, Annalen der Physik 409(8), 825 (1933)

    ADS  Google Scholar 

  104. T. Evers, H. Dahl, T. Wriedt, Electron. Lett. 32(15), 1356 (1996)

    Google Scholar 

  105. A. Doicu, T. Wriedt, Opt. Commun. 136(1–2), 114 (1997)

    ADS  Google Scholar 

  106. G. Gouesbet, G (Gréhan, Generalized Lorenz-Mie Theories (Springer-Verlag Berlin Heidelberg, 2011)

    Google Scholar 

  107. A. Doicu, T. Wriedt, Y. Eremin, Light Scattering by Systems of Particles, Null-Field Method with Discrete Sources: Theory and Programs, vol. 124 (Springer, Berlin; New York, 2006)

    MATH  Google Scholar 

  108. J.A. Lock, Appl. Opt. 34(3), 559 (1995)

    ADS  Google Scholar 

  109. G. Gouesbet, G. Grehan, J. Opt. Pure Appl. Opt. 1(6), 706 (1999)

    ADS  Google Scholar 

  110. L. Mees, G. Gouesbet, G. Grehan, Opt. Commun. 282(21), 4189 (2009)

    ADS  Google Scholar 

  111. J.J. Wang, G. Gouesbet, Y.P. Han, G. Grehan, J. Opt. Soc. Am. Opt. Image Sci. Vis. 28(1), 24 (2011)

    ADS  Google Scholar 

  112. L. Mees, G. Gouesbet, G. Grehan, Appl. Opt. 40(15), 2546 (2001)

    ADS  Google Scholar 

  113. L.W. Davis, Phys. Rev. A 19(3), 1177 (1979)

    ADS  Google Scholar 

  114. G. Gouesbet, G. Grehan, B. Maheu, K.F. Ren, Electromagnetic scattering of shaped beams (Generalized Lorenz-Mie Theory). Technical report, LESP, CORIA, INSA de Rouen (1998). http://ren.perso.neuf.fr/ThesisHDRBooks/Livre_glmt.pdf

  115. N.J. Moore, M.A. Alonso, Opt. Express 16(8), 5926 (2008)

    ADS  Google Scholar 

  116. P.W. Barber, S.C. Hill, Light scattering by particles: Computational methods (World Scientific Publishing, Singapore, 1990)

    Google Scholar 

  117. L. Mees. GLMT Champ Internes (2008). http://www.scattport.org/index.php/programs-menu/mie-type-codes-menu/130-glmt-champ-internes

  118. M. Ringler, Plasmonische Nahfeldresonatoren aus zwei biokonjugierten Goldnanopartikeln. (2008)

    Google Scholar 

  119. G. Pellegrini, Modeling the optical properties of nanocluster-based functional plasmonic materials. Ph.D. thesis, Tesi di dottorato, Università degli Studi di Padova, Padova (2008)

    Google Scholar 

  120. L. Boyde, K.J. Chalut, J. Guck, Phys. Rev. E 83(2), 026701 (2011)

    ADS  Google Scholar 

  121. S. Lecler, Etude de la diffusion de la lumière par des particules sub-microniques. Ph.D. thesis, Thèse. l’Université Louis Pasteur, Strasbourg (2005)

    Google Scholar 

  122. R. Ruppin, Phys. Rev. B 11, 2871 (1975)

    ADS  Google Scholar 

  123. F. Borghese, P. Denti, R. Saija, Scattering from model nonspherical particles: theory and applications to environmental physics (Springer- Berlin, New York, 2007)

    Google Scholar 

  124. K. Travis, J. Guck, Biophys. Rev. Lett. 2, 179 (2006)

    Google Scholar 

  125. Y. Okada, in Light Scattering Reviews, ed. by A.A. Kokhanovsky, 5th edn. Springer Praxis Books (Springer Berlin, New York, 2010) pp. 3–35

    Google Scholar 

  126. W. Trinks, Annalen der Physik 414(6), 561 (1935)

    ADS  Google Scholar 

  127. S. Levine, G.O. Olaofe, J. Colloid Interface Sci. 27(3), 442 (1968)

    Google Scholar 

  128. J. Bruning, Y. Lo, IEEE Trans. Antennas Propag. 19(3), 378 (1971)

    ADS  Google Scholar 

  129. J. Bruning, Y. Lo, IEEE Trans. Antennas Propag. 19(3), 391 (1971)

    ADS  Google Scholar 

  130. K.A. Fuller, G.W. Kattawar, R.T. Wang, Appl. Opt. 25(15), 2521 (1986)

    ADS  Google Scholar 

  131. K.A. Fuller, G.W. Kattawar, Opt. Lett. 13(2), 90 (1988)

    ADS  Google Scholar 

  132. K.A. Fuller, G.W. Kattawar, Opt. Lett. 13(12), 1063 (1988)

    ADS  Google Scholar 

  133. D.W. Mackowski, J. Opt. Soc. Am. A 11(11), 2851 (1994)

    ADS  Google Scholar 

  134. D.W. Mackowski, M.I. Mishchenko, J. Opt. Soc. Am. A 13(11), 2266 (1996)

    ADS  Google Scholar 

  135. Y. lin Xu, Appl. Opt. 34(21), 4573 (1995)

    Google Scholar 

  136. Y.l. Xu, Appl. Opt. 36(36), 9496 (1997)

    Google Scholar 

  137. L. Liu, M.I. Mishchenko, W.P. Arnott, J. Quant. Spectrosc. Radiat. Transf. 109(15), 2656 (2008)

    ADS  Google Scholar 

  138. Y.l. Xu, J. Quant. Spectrosc. Radiat. Transf. 89(1–4), 385 (2004)

    Google Scholar 

  139. V. Schmidt, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1392 (2009)

    ADS  Google Scholar 

  140. D. Mackowski, M. Mishchenko, J. Quant. Spectrosc. Radiat. Transf. 112, 2182 (2011)

    ADS  Google Scholar 

  141. M. Tagviashvili, Phys. Rev. A 81, 045802 (2010)

    ADS  Google Scholar 

  142. A.D. Ward, M. Zhang, O. Hunt, Opt. Express 16(21), 16390 (2008)

    ADS  Google Scholar 

  143. T. Grosges, A. Vial, D. Barchiesi, Opt. Express 13(21), 8483 (2005)

    ADS  Google Scholar 

  144. R.J. Zhu, J. Wang, G.F. Jin, Optik—Int. J. Light Electr. Opt. 116(9), 419 (2005)

    Google Scholar 

  145. C.G. Khoury, S.J. Norton, T. Vo-Dinh, Nanotechnology 21(31), 315203 (2010)

    ADS  Google Scholar 

  146. Y. Takano, K.N. Liou, Appl. Opt. 49(20), 3990 (2010)

    ADS  Google Scholar 

  147. A. Doicu, R. Schuh, T. Wriedt, in Light Scattering Reviews, 3 edn. by A.A. Kokhanovsky (Springer-Berlin, Germany, 2008), pp. 109–130

    Google Scholar 

  148. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006)

    Google Scholar 

  149. T. Wriedt, http://www.scattport.org

  150. J. Hellmers, T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 110(14–16), 1511 (2009)

    ADS  Google Scholar 

  151. P.J. Flatau, http://code.google.com/p/scatterlib/

  152. T. Wriedt, J. Quant. Spectrosc. Radiat. Transf. 109(8), 1543 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

I acknowledge the support of this work by Deutsche Forschungsgemeinschaft (DFG). I like to thank Jannis Saalfeld and Vincent Loke for lauguage editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wriedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wriedt, T. (2012). Mie Theory: A Review. In: Hergert, W., Wriedt, T. (eds) The Mie Theory. Springer Series in Optical Sciences, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28738-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28738-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28737-4

  • Online ISBN: 978-3-642-28738-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics