Skip to main content
Log in

Brain lactic acidosis and ischemic cell damage: A topographic study with high-resolution light microscopy of early recovery in a rat model of severe incomplete ischemia

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Transient severe incomplete ischemia was induced in rats by a combination of bilateral carotid artery clamping and hypovolemic hypotension. Production of lactic acid in the ischemic brain was modified by preischemic administration of glucose or saline. After 30 min of ischemia and 5 or 90 min of recirculation, the animals were fixed by perfusion. High-resolution light microscopy based on whole hemisphere plastic sections revealed that the model produces a highly predictable ischemia in the telencephalon, with a more inconstant injury in the diencephalon, rostral brain stem, and cerebellum. The extent of injury correlates well with studies of local cerebral blood flow in the same model. The present study largely confirmed the opinion, based on the earlier study of the frontoparietal cortex, that the neuronal injury is predominantly of the ‘pale’ type, although fair amounts of ‘dark’ injury also appeared with predilection to the pyriform cortex, hippocampus, and occasionally the cerebellum. Excessive tissue lactic acidosis due to glucose pretreatment aggravated both types of neuronal injury. It was also accompanied by marked astrocytic edema as well as capillary obstruction in the group with long recirculation. A novel type of ischemic tissue change emerged, consisting of osmiophilic granules and whorls probably derived from damaged cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agardh C-D, Kalimo H, Olsson Y, Siesjö BK (1980) Hypoglycemic brain injury I. Metabolic and light-microscopic findings in rat cerebral cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol (Berl) 50:31–41

    Google Scholar 

  • Armitage P (1980) Statistical methods in medical research. Blackwell, Oxford London Edinburgh Boston Melbourne

    Google Scholar 

  • Arsenio-Nunes ML, Hossman K-A, Farkas-Bargeton E (1973) Ultrastructural and histochemical investigation of the cerebral cortex of cat during and after complete ischemia. Acta Neuropathol (Berl) 26:329–344

    Google Scholar 

  • Brierley JB (1976) Cerebral hypoxia. In: Blackwood W, Corsellis JAN (eds) Greenfield's neuropathology. Arnold, London, pp 43–85

    Google Scholar 

  • Brown AW, Brierley JB (1972) Anoxic-ischaemic cell change in rat brain. Light-microscopic and fine structural observations. J. Neurol Sci 16:59–64

    Google Scholar 

  • Campbell JA (1938) Increase in the resistance to oxygen want in animals on certain diets. Q J Exp Physiol 28:231–241

    Google Scholar 

  • Craven C, Chinn H, MacVicar R (1950) Effect of carrot diet and restricted feeding on the resistance of the rat to hypoxia. J Aviat Med 21:256–258

    Google Scholar 

  • Diemer NH, Siemkowicz E (1981) Regional neurone damage after cerebral ischaemia in the normo- and hypoglycemic rat. Neuropathol Appl Neurobiol 7:217–227

    Google Scholar 

  • Ericsson JLE, Biberfeld P (1967) Studies on aldehyde fixation. Fixation rates and their relation to fine structure and some histochemical reactions in liver. Lab Invest 17:281–298

    Google Scholar 

  • Friede RL, Van Houten WH (1961) Relations between postmortem alterations and glycolytic metabolism in the brain. Exp Neurol 4:197–204

    Google Scholar 

  • Garcia JH, Kamijyo Y, Kalimo H, Tanaka J, Viloria JE, Trump BF (1975) Cerebral ischemia: The early structural changes and correlation of these with known metabolic and dynamic abnormalities. In: Whisnant JP, Sandok B (eds) Cerebral vascular diseases. Grune and Stratton, New York, pp 313–323

    Google Scholar 

  • Garcia JH, Kalimo H, Kamijyo Y, Trump BF (1977) Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral artery occlusion. Virchows Arch [Cell Pathol] 25:191–206

    Google Scholar 

  • Ghadially FN (1982) Ultrastructural pathology of the cell and matrix. Butterworths, London Boston Sidney Wellington Durban Toronto

    Google Scholar 

  • Ginsberg MD, Welsh FA, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. I. Local cerebral blood flow and glucose utilization. Stroke 11:347–354

    Google Scholar 

  • Ito U, Spatz M, Walker JT, Jr., Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. Light-microscopic observations. Acta Neuropathol (Berl) 32:209–223

    Google Scholar 

  • Jenkins LW, Povlishock JT, Becker DP, Miller JD, Sullivan HG (1979) Complete cerebral ischemia. An ultrastructural study. Acta Neuropathol (Berl) 48:113–125

    Google Scholar 

  • Jenkins LW, Povlishock JT, Lewelt W, Miller JD, Becker DP (1981) The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol (Berl) 55:205–220

    Google Scholar 

  • Kalimo, H, Paljärvi L, Vapalahti M (1979) The early ultrastructural alterations in the rabbit cerebral and cerebellar cortex after compression ischemia. Neuropathol Appl Neurobiol 5:211–223

    Google Scholar 

  • Kalimo H, Agardh C-D, Olsson Y, Siesjö BK (1980) Hypoglycemic brain injury II. Electron-microscopic findings in rat cerebral cortical neurons during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. Acta Neuropathol (Berl) 50:43–52

    Google Scholar 

  • Kalimo H, Rehncrona S, Söderfeldt B, Olsson Y, Siesjö BKM (1981) Brain lactic acidosis and ischemic cell damage. 2. Histopathology. J Cereb Blood Flow Metabol 1:313–327

    Google Scholar 

  • Kalimo H, Olsson Y, Paljärvi L, Söderfeldt B (1982a) Structural changes in brain tissue under hypoxic-ischemic conditions. J Cereb Blood Flow Metabol [Suppl 1] 2:S19–22

    Google Scholar 

  • Kalimo H, Paljärvi L, Olsson Y (1982b) Morphological and biochemical features of brain hypoxia-ischemia. In: Wauquier A et al (eds) Protection of tissues against hypoxia. Elsevier, Amsterdam, pp 59–69

    Google Scholar 

  • Kalimo H, Paljärvi L, Olsson Y, Siesjö BK (1983) Structural aspects of energy failure states in the brain. In: Wiedemann K, Hoyer S (eds) Brain protection. Morphological, pathophysiological and clinical aspects. Springer, Berlin Heidelberg New York London Tokyo, pp 1–11

    Google Scholar 

  • Kimelberg HK, Bourke RS, Stieg PE, Barron KD, Hirata H, Pelton EW, Nelson LR (1982) Swelling of astroglia after injury to the central nervous system: mechanisms and consequences. In: Grossman RG, Gildenberg PL (eds) Head injury: basic and clinical aspects. Semi Neurol Surg. Raven Press, New York, pp 31–44

    Google Scholar 

  • Kirino JT (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Google Scholar 

  • Kågström E, Smith M-L, Siesjö BK (1983) Recirculation in the brain following incomplete ischemia in the rat. J Cereb Blood Flow Metabol 3:183–192

    Google Scholar 

  • Levine S (1960) Anoxic-ischemic encephalopathy in rats. Am J Pathol 36:1–17

    Google Scholar 

  • Little JR, Sundt TM, Jr, Kerr FWL (1974) Neuronal alterations in developing cortical infarction. J Neurosurg 39:186–198

    Google Scholar 

  • Molinari GF, Laurent JP (1976) A classification of experimental models of brain ischemia. Stroke 7:14–17

    Google Scholar 

  • Myers RE (1979) A unitary theory of causation of anoxic and hypoxic brain pathology. In: Fahn S, Davis HN, Rowland LP (eds) Advances in neurology, vol 26: Cerebral hypoxia and its consequences. Raven Press. New York, pp 195–213

    Google Scholar 

  • Myers RE, Yamaguchi M (1976) Effects of serum glucose concentration on brain response to circulatory arrest. J Neuropathol Exp Neurol 35:301

    Google Scholar 

  • Nordström CH, Siesjö BK (1978) Effects of phenobarbital in cerebral ischemia, part 1: cerebral energy metabolism during incomplete ischemia. Stroke 9:327–335

    Google Scholar 

  • Paljärvi L, Rehncrona S, Söderfeldt B, Olsson Y, Kalimo H (1983) Brain lactic acidosis and ischemic cell damage: quantitative ultrastructural changes in capillaries of rat cerebral cortex. Acta Neuropathol (Berl) 60:232–240

    Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Google Scholar 

  • Pulsinelli WA, Waldman S, Sigsbee B, Rawlinson D, Scherer P, Plum F (1980) Experimental hyperglycemia and diabetes mellitus worsen stroke outcome. Trans Am Neurol Assoc 105:21–24

    Google Scholar 

  • Pulsinelli WA, Brierley IB, Plum F (1982a) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Google Scholar 

  • Pulsinelli WA, Waldman S, Rawlinson D, Plum F (1982b) Moderate hyperglycemia augments ischemic brain damage: A neuropathologic study in the rat. Neurology (NY) 32:1239–1246

    Google Scholar 

  • Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F (1983) Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:540–544

    Google Scholar 

  • Rehncrona S, Rosén I, Siesjö BK (1980) Excessive cellular acidosis: An important mechanism of neuronal damage in the brain? Acta Physiol Scand 110:435–437

    Google Scholar 

  • Rehncrona S, Rosén I, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage. I. Biochemistry and neurophysiology. J Cereb Blood Flow Metabol 1:297–311

    Google Scholar 

  • Siemkowicz E, Gjedde A (1980) Post-ischemic coma in the rat: Effect of different preischemic blood glucose levels on cerebral metabolic recovery after ischemia. Acta Physiol Scand 110:225–232

    Google Scholar 

  • Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo, and hyperglycemic rats. Acta Neurol Scand 58:1–8

    Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, New York

    Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metabol 1:155–185

    Google Scholar 

  • Vogt C, Vogt O (1922) Erkrankungen der Großhirnrinde im Licht der Topistik, Pathoklise und Pathoarchitektonik. J Psychol Neurol 28:5–171

    Google Scholar 

  • Welsh FA, Ginsberg MD, Rieder W, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels. Stroke 11:355–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Finnish Medical Research Council, Research and Science Foundation of Lääke Oy, Swedish Medical Research Council, and US Public Health Service

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paljärvi, L. Brain lactic acidosis and ischemic cell damage: A topographic study with high-resolution light microscopy of early recovery in a rat model of severe incomplete ischemia. Acta Neuropathol 64, 89–98 (1984). https://doi.org/10.1007/BF00695571

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695571

Key words

Navigation