Skip to main content
Log in

Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cultures of the autotrophic bacteriumMethanobacterium thermoautotrophicum were shown to assimilate acetate when grown on CO2 and H2 in the presence of acetate. At 1 mM acetate 10% of the cell carbon came from acetate, the rest from CO2. At higher concentrations the percentage increased to reach a maximum of 65%at acetate concentrations higher than 20 mM. The data suggest that acetate may be an important carbon source under physiological conditions.

The incorporation of acetate into alanine, aspartate and glutamate was studied in more detail. The cells were grown on CO2 and H2 in the presence of 1 mM U-14C-acetate. The three amino acids were isolated from the labelled cells by a simplified procedure. Alanine, aspartate and glutamate were found to have the same specific radioactivity. Degradation studies showed that C1 of alanine C1 and C4 of aspartate, and C1 and C5 of glutamate were exclusively derived from CO2, whereas C2 and C3 alamine and aspartate, and C3 and C4 of glutamate were partially derived from acetate. These findings and the presence of pyruvate synthase, phosphoenolpyruvate carboxylase and α-ketoglutarate synthase inM. thermoautotrophicum indicate that CO2 is assimilated into the three amino acids via acetyl CoA carboxylation to pyruvate, phosphoenolpyruvate carboxylation to oxaloacetate, and succinyl CoA carboxylation to α-ketoglutarate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew, I. G., Morris, J. G.: The biosynthesis of alanine byClostridium kluyveri. Biochim. Biophys. Acta97, 176–179 (1965)

    Google Scholar 

  • Aronoff, S.: Techniques of radiobiochemistry, p. 141. Iowa: Iowa State College Press 1956

    Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem.1, 279–285 (1960)

    Google Scholar 

  • Bryant, M. P., Tzeng, S. F., Robinson, I. M., Joyner, A. E.: Nutrient requirements of methanogenic bacteria. In: Anaerobic treatment processes. Advances in chemistry, Vol. 105 (F. G. Pohland, ed.), pp. 23–40. Washington, D. C.: Amer. Chem. Soc. 1971

    Google Scholar 

  • Buchanan, B. B.: Ferredoxin and carbon assimilation. In: Iron sulfur proteins, Vol. 1 (W. Lovenberg, ed.), pp. 129–150. New York-London: Academic Press 1973

    Google Scholar 

  • Cutinelli, C., Ehrensvärd, G., Högström, G., Reio, L., Saluste, E., Sternholm, R.: Acetic acid metabolism inRhodospirillum rubrum under anaerobic conditions. Ark. Kemi3, 501–509 (1951)

    Google Scholar 

  • Daniels, L., Zeikus, J. G.: Abstr. Annu. Meet. Am. Soc. Microbiol.158, p. 121 (1976)

    Google Scholar 

  • Gottschalk, G.: The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur. J. Biochem.5, 346–351 (1968)

    Google Scholar 

  • Gottschalk, G., Barker, H. A.: Synthesis of glutamate and citrate byClostridium kluyveri. A new type of citrate synthase. Biochemistry5, 1125–1133 (1966)

    Google Scholar 

  • Grassl, M.: Alanin-Bestimmung mit GPT und LDH. In: Methoden der enzymatischen Analyse. Vol. 2 (H. U. Bergmeyer, ed.), pp. 1637–1640. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Hoare, D. S.: The photoassimilation of acetate byRhodospirillum rubrum. Biochem. J.87, 284–301 (1963)

    Google Scholar 

  • Hoare, D. S., Gibson, J.: Photoassimilation of acetate and the biosynthesis of amino acids byChlorobium thiosulfatophilum. Biochem. J.91, 546–559 (1964)

    Google Scholar 

  • Hohorst, H.-J.:l-(+)-Lactat-Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Vol. 2 (H. U. Bergmeyer, ed.), pp. 1425–1429. Weinheim: Verlag Chemie 1970

    Google Scholar 

  • Hungate, R. E.: A roll tube method for cultivation of strict anaerobs. In: Methods in Microbiology, Vol. 3B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132. New York-London: Academic Press 1969

    Google Scholar 

  • Jungermann, K., Thauer, R. K., Wenning, J., Decker, K.: Confirmation of unusual stereochemistry of glutamate biosynthesis inClostridium kluyveri. FEBS Letters1, 74–76 (1968)

    Google Scholar 

  • Kedenburg, C. P.: Lithium buffer system for accelerated singlecolumn amino acid analysis in physiological fluids. Anal. Biochem.40, 35–42 (1971)

    Google Scholar 

  • Kelly, D. P.: The incorporation of acetate by the chemoautotrophThiobacillus neapolitanus strain C. Arch. Mikrobiol.58, 99–116 (1967)

    Google Scholar 

  • Kemble, A. R., Macpherson, H. T.: Determination of monoamino monocarboxylic acids by quantitative paper chromatography. Biochem. J.56, 548–555 (1954)

    Google Scholar 

  • Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol.23, 515–538 (1969)

    Google Scholar 

  • Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T., Britton, R. J.: Studies of biosynthesis inEscherichia coli. Carnegie Institute. Washington (1957)

    Google Scholar 

  • Stegemann, H.: Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z. Physiol. Chem.319, 102–109 (1960)

    Google Scholar 

  • Simon, H., Floss, H. G.: Anwendung von Isotopen in der organischen Chemie und Biochemie, Vol. 2, pp. 23ff., 50ff. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Taylor, G. T., Kelley, D. P., Pirt, S. J.: Intermediary metabolism in methanogenic bacteria. In: Proceedings of the Symposium “Microbial production and utilization of gases (H2, CH4, CO)” (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 173–180, Akademie der Wissenschaften zu Göttingen. Göttingen: Goltze 1976

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Wenning, J., Decker, K.: Characterization of crotonate grownClostridium kluyveri by its assimilatory metabolism. Arch. Mikrobiol.64, 125–129 (1968)

    Google Scholar 

  • Tomlinson, N.: Carbon dioxide and acetate utilization byClostridium kluyveri. II. Synthesis of amino acids. J. Biol. Chem.209, 597–603 (1954a)

    Google Scholar 

  • Tomlinson, N.: Carbondioxide and acetate utilization byClostridium kluyveri. III. A new path of glutamic acid synthesis. J. Biol. Chem.209, 605–609 (1954b)

    Google Scholar 

  • Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilization byClostridium kluyveri. I. Influence of nutritional conditions on utilization patterns. J. Biol. Chem.209, 585–595 (1954)

    Google Scholar 

  • Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev.41, 514–541 (1977)

    Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis ofMethanobacterium thermoautotrophicum. J. Bacteriol.132, 604–613 (1977)

    Google Scholar 

  • Zeikus, J. G., Weimer, P. J., Nelson, D. R., Daniels, L.: Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Arch. Microbiol.104, 129–134 (1975)

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S.:Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J. Bacteriol.109, 707–713 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Stupperich, E. & Thauer, R.K. Acetate assimilation and the synthesis of alanine, aspartate and glutamate inMethanobacterium thermoautotrophicum . Arch. Microbiol. 117, 61–66 (1978). https://doi.org/10.1007/BF00689352

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689352

Key words

Navigation