Skip to main content
Log in

Specific ultrastructural markers of human pinealomas

A study of four cases

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

An ultrastructural study of four pinealomas was carried out to precise eventual specific markers. Dark and clear cells joined with zonulae adherents, extensive and pleiomorphous processes, a complex vacuolar system, and characteristic organelles (lysosome-like structures, clear and dense-core vesicles, vesicle-crowned rodlets and related structures, microtubular sheaves and centriolar derivatives, membranous whorls, fibrous bodies, microtubules, heterogeneous cytoplasmic inclusions) offered a typical pattern. No correlation could be made between the histological and ultrastructural features. The authors stress the ultrastructural similarities between the human tumor cells and the mammalian pineal cells. Pinealomas appeared as a morphological entity distinct from neuronal and astrocytic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borit A, Blackwood W (1979) Pineocytoma with astrocytomatous differentiation. J Neuropathol Exp Neurol 38:253–258

    Google Scholar 

  • Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson's disease. J Neuropathol Exp Neurol 24:398–414

    Google Scholar 

  • Hassoun J, Gambarelli D, Grisoli F, Pellet W, Salamon G, Pellissier JF, Toga M (1982) Central neurocytoma. An electron microscopic study of two cases. Acta Neuropathol (Berl) 56:151–156

    Google Scholar 

  • Herrick MK, Rubinstein LJ (1979) The cytological differentiating potential of pineal parenchymal neoplams (true pinealomas). Brain 102:289–320

    Google Scholar 

  • Hewing M (1980) Synaptic ribbons in the pineal system of normal and light deprived golden hamsters. Anat Embryol 159:71–80

    Google Scholar 

  • Hirano A (1971) Electron microscopy in neuropathology. In: Zimmerman HM (ed) Progress in neuropathology. Heineman, London, pp 1–61

    Google Scholar 

  • Karasek M (1976) Quantitative changes in number of “synaptic ribbons” in rat pinealocytes after orchidectomy and in organ cultures. J Neural Transm 38:149–157

    Google Scholar 

  • Karasek M, Vollrath L (1982) “Synaptic” ribbons and spherules of the rat pineal gland: day/night changes in vitro. Exp Brain Res 46:205–208

    Google Scholar 

  • King TS, Dougherty WJ (1982) Effect of denervation on “synaptic” ribbon population in the rat pineal gland. J Neurocytol 11:19–28

    Google Scholar 

  • Kline KT, Damjanov I, Moriber-Katz S, Schmidek H (1979) Pineoblastoma: an electron-microscopic study. Cancer 44:1692–1699

    Google Scholar 

  • Kurumado K, Mori W, Matsutani M, Sano K (1976) Virus-like particles in human pinealoma. Acta Neuropathol (Berl) 35:273–276

    Google Scholar 

  • Loewenthal A, Flament-Durand J, Karcher D, Noppe M, Brion JP (1982) Glial cells identified by anti-α-albumin (anti GFA) in human pineal gland. J Neurochem 38:863–865

    Google Scholar 

  • Markesberry MR, Haugh RM, Young AB (1981) Ultrastructure of pineal parenchyma neoplasms. Acta Neuropathol (Berl) 55:143–149

    Google Scholar 

  • Møller M (1974) The ultrastructure of the human fetal pineal gland. I. Cell types and blood vessels. Cell Tiss Res 152:13–30

    Google Scholar 

  • Møller M (1976) The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions. Cell Tiss Res 169:7–21

    Google Scholar 

  • Møller M, Ingild A, Bock E (1978) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res 140:1–13

    Google Scholar 

  • Moses HL, Ganote CE, Beaver DL, Schuffman SS (1966) Light and electron microscopic studies of pigment in human and rhesus monkey substantia nigra and locus coeruleus. Anat Rec 155:167–184

    Google Scholar 

  • Neuwelt EA, Glasberg M, Frenkel E, Kemp Clark W (1979) Malignant pineal region tumors. A clinico-pathological study. J Neurosurg 5:597–607

    Google Scholar 

  • Nielsen SL, Wilson WB (1975) Ultrastructure of a “pineocytoma”. J Neuropathol Exp Neurol 34:148–158

    Google Scholar 

  • Pevet P (1979) Secretory processes in the mammalian pinealocytes under natural and experimental conditions. Prog Brain Res 52:149–194

    Google Scholar 

  • Pevet P (1981) Ultrastructure of the mammalian pinealocyte. In: Reiter RJ (ed) The pineal gland, vol 1. Anatomy and biochemistry. CRC Press, Boca Raton, pp 121–148

    Google Scholar 

  • Romijn HJ, Mud MT, Wolters PS (1976) Electron microscopic evidence of glycogen storage in the dark pinealocytes of the rabbit pineal gland. J Neural Transm 38:231–237

    Google Scholar 

  • Rubinstein LJ, Herman MM (1972) A light and electron microscopic study of a temporal lobe ganglioglioma. J Neurol Sci 16:27–48

    Google Scholar 

  • Rubinstein LJ (1981) Cytogenesis and differentiation of pineal neoplasms. Human Pathol 12:441–448

    Google Scholar 

  • Ruiz-Navarro A, Blance-Rodriguez A, Gasquez-Ortiz A, Jover-Moyano A (1982) Synaptic ribbons in pinealocytes of castrated rates and rats treated with estradiol. Cell Biol Int Rep 6:629–633

    Google Scholar 

  • Russel DS, Rubinstein LJ (1963) Pathology of tumours of the nervous system. E Arnold, London, pp 173–181

    Google Scholar 

  • Samorajski T, Ordy JM, Keefe JR (1974) The fine structure of lipofuscin age pigment in the nervous system of aged mice. In: Nanda BS (ed) Aging pigment, current reseacch: 1: MSS Information, New York, pp 141–166

  • Shin WY, Laufer H, Lee YC, Aftalion B, Hirano A, Zimmerman HM (1978) Fine structure of a cerebellar neuroblastoma. Acta Neuropathol (Berl) 42:11–13

    Google Scholar 

  • Varakis JN, Zu Rhein GM (1976) Experimental pineocytoma of the Syrian hamster induced by a human papovavirus (JC). A light and electron microscopic study. Acta Neuropathol (Berl) 35:243–264

    Google Scholar 

  • Velasco ME, Roessmann V, Gambetti P (1982) The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 41:150–163

    Google Scholar 

  • Vollrath L (1973) Synaptic ribbons of a mammalian pineal gland. Circadian changes. Z Zellforsch 145:171–183

    Google Scholar 

  • Welsh MG, Reiter RJ (1978) The pineal gland of the gerbil Merions unguiculatus. I. An ultrastructural study. Cell Tiss Res 193:323–336

    Google Scholar 

  • Wolfe DE (1965) The epiphyseal cell: an electron microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Prog Brain Res 10:332–386

    Google Scholar 

  • Wurtman RJ, Axelrold J, Kelly DE (1968) The pineal. Academic Press, New York London, pp 20–23

    Google Scholar 

  • Yagishita S, Itoh Y, Chiba Y, Kuwana N (1982) Morphological investigations on cerebellar “neuroblastoma” group. Acta Neuropathol (Berl) 56:22–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant of FEGEFLUC (Fédération Nationale des Groupements des Entreprises Françáises dans la Lutte contre le Cancer), Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassoun, J., Gambarelli, D., Peragut, J.C. et al. Specific ultrastructural markers of human pinealomas. Acta Neuropathol 62, 31–40 (1983). https://doi.org/10.1007/BF00684917

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00684917

Key words

Navigation