Skip to main content
Log in

Modeling the similarities and differences between the sodalite cages (β-cages) in the generic materials

Sodalite, zeolites of type A, and zeolites with faujasite frameworks

  • Review
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Initially in this review the sodalite framework [T12O24]6− (T=Al, Si] is modeled with regular tetrahedra and disordered T atoms. Equations are given for calculating atomic coordinates from the unit cell parameter a and the T—O distancet; the expansion or contraction of the sodaliteβ-cage is related quantitatively to changes ina through the cooperative twistsφ of TO4 tetrahedra about 4 axes and changes in < TOT bridge angles. The fully expanded cage hasφ=0° and the maximum value ofa. The equations are general for any framework formed by isomorphous substitution of T by atoms other than Al, Si and for any Si∶Al ratio. The model and equations are extended to the zeolite A framework, which can be built from fully expanded sodalite cages. With the cooperative tilt of the TO4 tetrahedra of zeolite A, described by Depmeier, the major variable features of the zeolite A framework are explained quantitatively. The faujasite framework has twistedβ-cages (φ>0), as in sodalite examples, and is quantitatively modeled most conveniently from sodalite examples with similarβ-cage contents. The review is extended to structures with T-ordering and distorted tetrahedra. Methods are given for estimating a for sodalites from a knowledge of the cavity contents, especially the sizes of cations and anions, and so on, present. Ways of predicting cavity sites in zeolite A as a function of cation size are presented, and the principal cavity sites in the faujasiteβ-cage region are discussed. Finally the review considers isomorphous replacement of T atoms (Si or Al) by B, Be, Fe, Ga, Ge, and P; many of these substituted frameworks are stabilized by templates, or guest molecules, which reside in the cavities. Templates also stabilize Si, Al frameworks with high Si∶Al ratios. The modeling approach reviewed here is tested on a range of isomorphously substituted frameworks isotypic with sodalite; observed and calculated values of twist and <TOT angles are in good agreement except in one case. This exception concerns aluminate sodalites [Al12O24]12− with distorted tetrahedra; these are structures with Al-O-Al bridges, which violate Loewenstein's Rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breck, D. W.Zeolite Molecular Sieves; Wiley: New York, 1974. Reed T. B.; Breck, D. W.J. Am. Chem. Soc. 1956,78, 5972. For other pioneering structural work see also Barrer, R. M.; Meier, W. M.Trans. Faraday Soc. 1958,54, 1074. Broussard L.; Shoemaker D. P.J. Am. Chem. Soc. 1960,82, 1041.

    Google Scholar 

  2. Loewenstein, W.Amer. Min. 1954,39, 92.

    Google Scholar 

  3. Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier, W. M.Nature (London) 1978,272, 437.

    Google Scholar 

  4. Kokotailo, G. T.; Lawton, S. L.; Chiu, P.; Meier, W. M.Nature (London) 1978,275, 119.

    Google Scholar 

  5. McCusker, L. B.J. Appl. Crystallogr. 1988,21, 305.

    Google Scholar 

  6. Liang, K. S.; Laderman, S. S.; Sinfelt, J. H.J. Chem. Phys. 1987,86, 2352.

    Google Scholar 

  7. Newsam, J. M.Material Sci. Forum 1987,27, 385.

    Google Scholar 

  8. Ya, J.; Xie, D.; Yelon, W. B.; Newsam, J. M.J. Phys. Chem. 1988,96, 3586.

    Google Scholar 

  9. Englehardt, G.; Michel, D.High Resolution Solid State NMR of Zeolites and Related Systems; Wiley: New York, 1987.

    Google Scholar 

  10. Fyfe, C. A.; Gobbi, G. C.; Murphy, W. J.; Ozubko, R. S.; Slack, D. A.Chem. Letters 1983, 1547; IdemJ. Am. Chem. Soc. 1984,106, 4435.

    Google Scholar 

  11. Space Group Symmetry; Hahn, T., Ed.; International Tables for X-ray Crystallography (Vol. A); Reidel: Holland, 1983.

  12. Mortier, W. J.Compilation of Extra-Framework Sites in Zeolites; Butterworth: Guildford, England, 1982.

    Google Scholar 

  13. Titiloye, J. O.PhD Thesis; UMIST, 1988.

  14. Beagley, B.; Henderson, C. M. B.; Taylor, D.Min. Mag. 1982,46, 459.

    Google Scholar 

  15. Hassan, I.; Grundy, H. D.Acta Crystallogr. Sect. B 1984,40, 6.

    Google Scholar 

  16. Depmeier, W.Acta Crystallogr. Sect. B 1984,40, 185.

    Google Scholar 

  17. Almenningen, A.; Bastiansen, O.; Ewing, V.; Hedberg, K.; Traetteberg, M.Acta Chem. Scand. 1963,17, 2455.

    Google Scholar 

  18. Boonstra, L. H.; Mijlhoff, F. C.; Renes, G.; Spelbos, A.; Hargittai, I.J. Mol. Struct. 1975,28, 129.

    Google Scholar 

  19. Depmeier, W.Acta Crystallogr. Sect. B 1985,41, 101.

    Google Scholar 

  20. Cheetham, A. K.; Fyfe, C. A.; Smith, J. V.; Thomas, J. M.J. Chem. Soc. Chem. Commun. 1982, 823.

  21. Yanagida, R. Y.; Amaro, A. A.; Seff, K.J. Phys. Chem. 1973,77, 805.

    Google Scholar 

  22. Ref. [13], Sect. 4.4: Table 4.2.

  23. McCusker, L. B.; Seff, K.J. Phys. Chem. 1981,85, 405.

    Google Scholar 

  24. Baur, W. H.Acta Crystallogr. Sect. B 1980,36, 2198.

    Google Scholar 

  25. Gramlich-Meier, R.; Meier, W. M.J. Solid State Chem. 1982,44, 41.

    Google Scholar 

  26. Hill, R. J.; Gibbs, G. V.Acta Crystallogr. Sect. B 1979,35, 25.

    Google Scholar 

  27. Olson, D. H.J. Phys. Chem. 1970,74, 2758.

    Google Scholar 

  28. Felsche, J.; Luger, S.; Baerlocher, Ch.Zeolites 1986,6, 367.

    Google Scholar 

  29. Hassan, I.; Grundy, H. D.Acta Crystallogr. Sect. C 1983,39, 3.

    Google Scholar 

  30. Ref. [13], p. 156.

  31. Pluth, J. J.; Smith, J. V.J. Am. Chem. Soc. 1980,102, 4704.

    Google Scholar 

  32. Schulz, H.; Saalfeld, H.Tschermaks Min. Petr. Mitt. 1965,10, 225.

    Google Scholar 

  33. Löhn, J.; Schulz, H.Neues Jb. Min. 1968,109, 201.

    Google Scholar 

  34. Kondo, R.J. Ceram. Assoc. Japan 1965,73, 1.

    Google Scholar 

  35. Tarling, S. E.; Barnes, P.; Klinowski, J.Acta Crystallogr. Sect. B 1988,44, 128.

    Google Scholar 

  36. Ref. [13], Sect. 3.5.

  37. Brown, I. D.; Shannon, R. D.Acta Crystrallgr. Sect. A 1973,29, 266.

    Google Scholar 

  38. Beagley, B. InMol. Struct. by Diffraction Methods; Sim, G. A.; Sutton, L. E., Eds.; Spec. Period, Rep.; Chem. Soc.: London,1975,3, 52.

    Google Scholar 

  39. Henderson, C. M. B.; Taylor, D.Phys. Chem. Min. 1978,2, 337.

    Google Scholar 

  40. Bukin, V. I.; Marakov, E. S.Geochem. Int. 1967,4, 19.

    Google Scholar 

  41. Bondareva, O. S.; Malinovskii, Yu. A.Sov. Phys. Crystallogr. 1983,28, 273.

    Google Scholar 

  42. Emiraliev, A.; Yamzin, I. I.;Sov. Phys. Crystallogr. 1978,23, 27.

    Google Scholar 

  43. Galitskii, V. Yu.; Shcherbakov, V. N.; Gabuda, S. P.Sov. Phys. Crystallogr. 1973,17, 691.

    Google Scholar 

  44. Galitskii, V. Yu.; Shcherbakov, V. N.; Gabuda, S. P.Sov. Phys. Crystallogr. 1974,18, 620.

    Google Scholar 

  45. Luger, S.; Felsche, J.Acta Crystallogr. Sect. C 1987,43, 1.

    Google Scholar 

  46. Sieger, P.; Englehardt, G.; Felsche, J.Abstr. 13th Annual Meeting of the British Zeolite Assoc. 1990.

  47. Agbasi, V. E.MSc Dissert.; UMIST, 1983.

  48. Ref. [13], Ch. 6.

  49. Ref. [13], Sections 4.5–4.6.

  50. Subramanian, V.; Seff, K.J. Phys. Chem. 1977,81, 2249.

    Google Scholar 

  51. Adams, J. M.; Haselden, D. A.J. Solid State Chem. 1982,44 245.

    Google Scholar 

  52. Leung, P. C. W.; Kunz, K. B.; Seff, K.; Maxwell, I. E.J. Phys. Chem. 1975,79, 2157.

    Google Scholar 

  53. Firror, R. L.; Seff, K.J. Am. Chem. Soc. 1977,99, 1112.

    Google Scholar 

  54. Pluth, J. J.; Smith, J. V.J. Am. Chem. Soc. 1983,105, 2621.

    Google Scholar 

  55. Firror, R. L.; Seff, K.J. Am. Chem. Soc. 1977,99, 6249.

    Google Scholar 

  56. Heo, N-H.; Seff, K.J. Chem. Soc. Chem. Commun. 1987, 1225.

  57. Firror, R. L.; Seff, K.J. Am. Chem. Soc. 1977,99, 4039.

    Google Scholar 

  58. Kim, Y.; Seff, K.J. Am. Chem. Soc. 1978,100, 6989.

    Google Scholar 

  59. Chen, N. Y.J. Phys. Chem. 1976,80, 60.

    Google Scholar 

  60. Siegel, H.; Schollner, R.; Van Dun, J. J.; Mortier, W.J. Zeolites 1987,7, 148.

    Google Scholar 

  61. De Roy, G.; Van Sant, E. F.; Mortier, W. J.; Uytterhoeven, J. B.Proc. 5th Int. Conf. on Zeolites; Italy, 1980.

  62. Pluth, J. J.; Smith, J. V.J. Am. Chem. Soc. 1983,105, 1192.

    Google Scholar 

  63. Baur, W. H.Amer. Min. 1964,49, 697.

    Google Scholar 

  64. Al-Ajdah, G. N. D.; Al-Rished, A. A. Beagley, B.; Dwyer, J.; Fitch, F. R.; Ibrahim, T. K.J. Inclusion Phenom. 1985,3, 135.

    Google Scholar 

  65. Beagley, B.; Dwyer, J.; Fitch, F. R.; Zanjanchi, M. A.J. Inclusion Phenom. 1985,3, 143.

    Google Scholar 

  66. Smolin, Y. I.; Shepelev, Y. F.; Butikova, S. P.; Zhdanov, S. P.; Samulevich, N. N.Sov. Phys. Crystallogr. 1979,24, 266.

    Google Scholar 

  67. Beagley, B.; Dwyer, J.; Evmirides, N. P.; Hawa, A. I. F.; Ibrahim, T. K.Zeolites,1982,2, 167.

    Google Scholar 

  68. Rubio, J. A.; Soria, J.; Cano F. H.J. Coll. and Interf. Sci. 1980,73, 312.

    Google Scholar 

  69. Mortier, W. J.; Bosmans, H. J.J. Phys. Chem. 1971,75, 3327.

    Google Scholar 

  70. Mortier, W. J.; Bosmans, H. J.; Uytterhoeven, J. B.J. Phys. Chem. 1972,76, 650.

    Google Scholar 

  71. Ibrahim, T. K.PhD Thesis; UMIST, 1978.

  72. Eulenberger, G. R.; Shoemaker, D. P.; Keil, J. G.J. Phys. Chem. 1967,77, 1812.

    Google Scholar 

  73. De Boer, J. J.; Maxwell, I. E., J. Phys. Chem.1974,78, 2395.

    Google Scholar 

  74. Forano, C.; Slade, R. C. T.; Krough Anderson, E.; Krough Anderson, I. G.; Prince, E.J. Solid State Chem. 1989,82, 95.

    Google Scholar 

  75. Olson, D. H.; Sherry, H. S.J. Phys. Chem. 1968,72, 4095.

    Google Scholar 

  76. Pluth, J. J.; Smith, J. V.Mat. Res. Bull. 1973,8, 459.

    Google Scholar 

  77. Jeanjean, J.; Delafosse, D.; Gallezot, P.J. Phys. Chem. 1979,83, 2761.

    Google Scholar 

  78. Olson, D. H.J. Phys. Chem. 1968,72, 4366.

    Google Scholar 

  79. Bennett, J. M.; Smith, J. V.; Angell, C. L.Mat. Res. Bull. 1969,4, 77.

    Google Scholar 

  80. Olson, D. H.; Kokotailo, G. T.; Charnell, J. F.J. Coll. Interf. Sci. 1968,28, 305.

    Google Scholar 

  81. Smith, J. V.; Bennett, J. M.; Flanigen, E. M.Nature (London) 1967,215, 241.

    Google Scholar 

  82. Scherzer, J.; Bass, J. L.; Hunter, F. D.J. Phys. Chem. 1975,79, 1194.

    Google Scholar 

  83. Mauge, F.; Gallezot, P.; Courcelle, J. C.; Engelhard, P.; Grosmangin, J.Zeolites 1986,6, 212.

    Google Scholar 

  84. Hunter, F. D.; Scherzer, J.J. Catalysis 1971,20, 246.

    Google Scholar 

  85. Gallezot, P.; Ben Taarit, Y.; Imelik, B.J. Catalysis 1972,26, 295.

    Google Scholar 

  86. Maxwell, I. E.; De Boer, J. J.J. Phys. Chem. 1975,79, 1874.

    Google Scholar 

  87. Zanjanchi, M. A.PhD Thesis; UMIST, 1980.

  88. Rees, L. V. C.; Tao, Z.Zeolites 1986,6, 234.

    Google Scholar 

  89. Ref. [13], Section 5.5.

  90. Mabilia, M.; Pearlstein, R. A.; Hopfinger, A. J.J. Am. Chem. Soc. 1987,109, 7960.

    Google Scholar 

  91. Allan, N. L.; Catlow, C. R. A.; Colbourn, E. A.Chem. in Brit. 1990, 1079.

  92. Bibby, D. M.; Dale, M. P.Nature (London) 1985,317, 157.

    Google Scholar 

  93. Keijsper, J.; Den Ouden, C. J. J.; Post, M. F. M. InZeolites: Facts Figures, Future; Jacobs, P. A.; Van Santen, R. A., Eds.; Proc. 8th Int. Zeolite Conf.; Elsevier: Amsterdam, 1989, p. 237.

    Google Scholar 

  94. Baerlocher, Ch.; Meier, W. M.Helv. Chim. Acta 1969,52, 1853.

    Google Scholar 

  95. Lok, B. M.; Cannan, T. R.; Messina, C. A.Zeolites 1983,3, 282.

    Google Scholar 

  96. Ponomarev, V. I.; Kheiker, D. M.; Belov, N. V.Sov. Phys. Crystallogr. 1971,15, 799.

    Google Scholar 

  97. Depmeier, W.J. Appl. Crystallogr. 1979,12, 623.

    Google Scholar 

  98. Saalfeld, H.; Depmeier, W.Kristall und Technik 1972,7, 229.

    Google Scholar 

  99. Depmeier, W.Acta Crystallogr. Sect. B 1988,44, 201.

    Google Scholar 

  100. Depmeier, W.; Schmid, H.; Setter, N.; Werk, M. L.Acta Crystallogr. Sect. C 1987,43, 2251.

    Google Scholar 

  101. Depmeier, W.Acta Crystallogr. Sect. C 1984,40, 226.

    Google Scholar 

  102. Sahl, K.Z. Krist. 1980,152, 13.

    Google Scholar 

  103. Smith-Verdier, P.; Garcia-Blanco, S.Z. Krist. 1980,151, 175.

    Google Scholar 

  104. Hassan, I.; Grundy, H. D.Amer. Min. 1985,70, 186.

    Google Scholar 

  105. Szostak, R.; Thomas, T. L.J. Chem. Soc. Chem. Commun. 1986, 113.

  106. Fleet, M. E.Acta Crystallogr. Sect. C 1989,45, 843.

    Google Scholar 

  107. Newsam, J. M.; Jorgensen, J. D.Zeolites 1987,7, 569.

    Google Scholar 

  108. Löns, J.; Schulz, H.Acta Crystallogr. 1967,23, 434.

    Google Scholar 

  109. Bennett, J. M.; Dytrych, W. J.; Pluth, J. J.; Richardson, J. W., Jr.; Smith, J. V.Zeolites 1986,6, 349.

    Google Scholar 

  110. Ref. [13], Section 3.6.

  111. Hasha, D.; Sierra de Saldarriaga, L.; Saldarriaga, C.; Hathaway, P. E.; Cox, D. F.; Davis, M. E.J. Am. Chem. Soc. 1988,110, 2127.

    Google Scholar 

  112. Dano, M.Acta Crystallogr. 1966,20, 812.

    Google Scholar 

  113. Meier, W. M.; Olson, D. H.Atlas of Zeolite Structure Types (2nd ed.); Butterworth: Guildford, England, 1987.

    Google Scholar 

  114. Kerr, G. T.Inorg. Chem. 1966,5, 1537.

    Google Scholar 

  115. Kuehl, G. H.Inorg. Chem. 1971,10, 2488.

    Google Scholar 

  116. Sierra de Saldarriaga, L.; Saldarriaga, C.; Davis, M. E.J. Am. Chem. Soc. 1987,109, 2686.

    Google Scholar 

  117. Newsam, J. M.; Treacy, M. M. J.; Vaughan, D. E. W.; Strohmaier, K. G.; Mortier, W.J. J. Chem. Soc. Chem. Commun. 1989, 493.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beagley, B., Titiloye, J.O. Modeling the similarities and differences between the sodalite cages (β-cages) in the generic materials. Struct Chem 3, 429–448 (1992). https://doi.org/10.1007/BF00672017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00672017

Keywords

Navigation