Skip to main content
Log in

Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds

  • Theory of Crystal Structures
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A combinatorial and topological modeling of 1D, 2D, and 3D packings of symmetrically linked A4 tetrahedra has been performed. Three types of 1D chains with tetrahedra connectivities of 4, 6, and 8 were used to model 2D layers L-1, L-2, and L-3 and 3D frameworks FR-1, FR-2, FR-3, and FR-4. A family of tetrahedral structures with FR-1, FR-2, and FR-3 frameworks has been selected among the intermetallic compounds with chemical compositions of A 3 B, A 2 B 2, AB 3, A 2 BC, AB 2 C, and ABCD; this family includes more than 1900 compounds (TOPOS program package). It is found that the topological models of tetrahedral 3D frameworks are in correspondence with all types of the crystal structures formed in Au–Cu binary systems (FR-1 for Cu3Au (auricupride), Cu2Au2 (tetraauricupride), and CuAu3 (bogdanovite)), in the Mg–Cd system (FR-3 for Mg3Cd, Mg2Cd2, and MgCd3), in the Li–Hg system (FR-2 for Li3Hg and Li2Hg2 and FR-3 for LiHg3), in the Li–Ag–Al ternary system (FR-2 for LiAg2Al and Li2AgAl), and in the Li–Mg–Pd–Sn quaternary system (FR-2 for LiMgPdSn). Framework FR-4 has been established in ternary intermetallic compounds A(Li2Sn2); A = Cu, Ag, Au.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shubnikov, Selected Works on Crystallography (Nauka, Moscow, 1975) [in Russian], p. 44.

    Google Scholar 

  2. P. Engel, Geometric Crystallography (D. Reidel, Dordrecht, 1986).

    Book  MATH  Google Scholar 

  3. M. O’Keeffe and V. G. Hyde, Prot. Trans. Roy. Soc. Math. Phys. Sci. 295, 553 (1980).

    Article  ADS  Google Scholar 

  4. A. F. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1975).

    Google Scholar 

  5. G. D. Ilyushin and L. N. Dem’yanets, Model of Matrix Assembly of Crystal Structures. Crystallization Physics (Fizmatlit, Moscow, 2002) [in Russian], p. 82.

    Google Scholar 

  6. G. D. Ilyushin, Modeling of Self-Organization Processes in Crystal-Forming Systems (Editorial URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  7. G. D. Ilyushin, Crystallogr. Rep. 49 (7), S5 (2004).

    Google Scholar 

  8. G. D. Ilyushin, Struct. Chem. 20 (6), 975 (2012).

    Google Scholar 

  9. G. D. Ilyushin, Rus. J. Inorg. Chem. 58 (13), 1541 (2013).

    Article  Google Scholar 

  10. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972).

    Google Scholar 

  11. G. D. Ilyushin and V. A. Blatov, Kristallografiya 54 (3), 590 (2009).

    Google Scholar 

  12. G. D. Ilyushin and V. A. Blatov, Acta Crystallogr. B 65, 300 (2009).

    Article  Google Scholar 

  13. S. Han and J. V. Smith, Acta Crystallogr. A 55, 332 (1999).

    Article  Google Scholar 

  14. V. A. Blatov, J. Struct. Chem. 50, S160 (2009).

    Article  Google Scholar 

  15. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Cryst. Growth Des. 14, 3576 (2014).

    Article  Google Scholar 

  16. Inorganic Crystal Structure Database (ICSD) (FIZ, Karlsruhe and NIST, Gaithersburg, 2009).

  17. P. Villars and K. Cenzual, Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) (ASM International, Materials Park, OH).

  18. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Chem. Mater. 25, 412 (2013).

    Article  Google Scholar 

  19. A. Pankova, V. Blatov, G. Ilyushin, and D. Proserpio, Inorg. Chem. 52, 13094 (2013).

    Article  Google Scholar 

  20. V. Ya. Shevchenko, A. A. Golov, V. A. Blatov, and G. D. Ilyushin, Izv. Ross. Akad. Nauk, Ser. Khim., No. 1, 29 (2016).

    Google Scholar 

  21. P. Ramdohr, Fortschr. Mineral. 28, 69 (1949).

    Google Scholar 

  22. C. H. Johansson and J. O. Linde, Ann. Phys. (Berlin, Ger.) 5, 1 (1936).

    Article  ADS  Google Scholar 

  23. P. Bayliss, Can. Mineral. 28, 751 (1990).

    Google Scholar 

  24. D. A. Edwards, W. E. Wallace, and R. S. Craig, J. Am. Chem. Soc. 74, 5256 (1952).

    Article  Google Scholar 

  25. H. Steeple, Acta Crystallogr. 5, 247 (1952).

    Article  Google Scholar 

  26. D. A. Edwards, W. E. Wallace, and R. S. Craig, J. Am. Chem. Soc. 52, 5256 (1952).

    Article  Google Scholar 

  27. E. Zintl and A. Schneider, Z. Elektrochem. Angew. Phys. Chem. 41, 771 (1935).

    Google Scholar 

  28. E. Zintl and G. Brauer, Z. Phys. Chem., Suppl. B 20, 245 (1933).

    Google Scholar 

  29. E. Zintl and A. Schneider, Z. Elektrochem. Angew. Phys. Chem. 41, 771 (1935).

    Google Scholar 

  30. H. Pauly, A. Weiss, and H. Witte, Z. Metallkd. 59, 47 (1968).

    Google Scholar 

  31. L. Lacroix-Orio, M. Tillard, and C. Belin, Solid State Sci. 6, 1429 (2004).

    Article  ADS  Google Scholar 

  32. U. Eberz, W. Seelentag, and H. U. Schuster, Z. Naturforsch. 35, 1341 (1980).

    Article  Google Scholar 

  33. N. Schirmer, F. Winter, F. Matar Samir, et al., Z. Naturforsch. B 69, 1010 (2014).

    Article  Google Scholar 

  34. F. Winter, S. Dupke, H. Eckert, et al., Z. Anorg. Allg. Chem. 639, 2790 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ilyushin.

Additional information

Original Russian Text © G.D. Ilyushin, 2017, published in Kristallografiya, 2017, Vol. 62, No. 5, pp. 694–706.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyushin, G.D. Modeling of the self-organization processes in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds. Crystallogr. Rep. 62, 670–682 (2017). https://doi.org/10.1134/S106377451705008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451705008X

Navigation