Skip to main content
Log in

Intracellular optical physiology of the bee's eye

II. Polarizational sensitivity

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

As shown in our earlier paper, the non-invasive technique of intracellular optical physiology permits one to measure pupillary responses from only a single spectral type of photoreceptor. The purpose of this paper is to extend the technique to measurements of the polarizational sensitivity of each type of photoreceptor. We characterize the polarizational sensitivity function, which we measured using intracellular optical physiology, byP max andΦ max just as the polarizational sensitivity function of a single cell, measured using intracellular electrophysiology, is conventionally characterized by PS andΦ max. We demonstrate that the polarizational sensitivity function of the UV-pupil (see Table 1) is of the same form as expected for the polarizational sensitivity function of a single photoreceptor.

Based on our measurements of the spectral characteristics of the dark-adapted pupils of UV-, blue-, and green-receptors when they are stimulated with linearly polarized light, and based on the known spectral sensitivity functions of these receptors, we arrive at the following conclusions: Only the UV-receptors drive threshold pupillary responses to polarized light at 350 nm, and only the green-receptors drive responses at 530 nm. However, at 430 nm threshold responses are dominated by blue-receptors only when the stimulus is polarized perpendicular to the z-axis of the corneal array.

The UV-pupil exhibits high sensitivity to polarized light (P max=8).P max for the blue-pupil must exceed 4. However, the green-receptors exhibit no polarizational sensitivity at all (P max<1.3). The direction for maximal sensitivity for both UV-receptors and blue-receptors is when the polarizational angle is perpendicular to the z-axis.

Based on these results, the most likely hypothesis is that receptors number 1 and 5 are UV-receptors, number 2 and 6 are blue-receptors, and the remaining four are all green-receptors. This statement applies to both dorsal and ventral parts of the eye (Fig. 3).

This demonstration of polarizational sensitivity of pupillary responses raises the question of whether or not the rhabdoms of the bee's retina are really twisted. Thus, both hypotheses are evaluated in light of known anatomical and electrophysiological results as well as our new data on the optical physiology of the bee's retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumann, F.: Electrophysiological properties of the honeybee retina. In: The compound eye and vision of insects. Horridge, G.A. (ed.), pp. 53–74. Oxford: Clarendon Press 1975

    Google Scholar 

  • Beersma, D.G.M.: Spatial characteristics of the visual field of flies. Ph.D. Thesis, Rijksuniversiteit Groningen (1979)

  • Bernard, G.D., Wehner, R.: Intracellular optical physiology of the bee's eye: I. Spectral sensitivity. J. Comp. Physiol.137, 193–203 (1980)

    Google Scholar 

  • Cragg, B.: Overcoming the failure of electronmicroscopy to preserve the brain's extracellular space. TINS, pp. 159–161 (1979)

  • Duelli, P., Duelli-Klein, R., Hardie, R.C., Bernard, G.D.: Rhabdom twist and polarization sensitivity in the posterior lateral eyes of jumping spiders (Salticidae). (in prep.)

  • Goldsmith, T.H.: Fine structure of the retina in the compound eye of the honeybee. J. Cell Biol.14, 489–494 (1962)

    Google Scholar 

  • Goldsmith, T.H., Philpott, D.E.: The microstructure of compound eyes in insects. J. Biophys. Biochem. Cytol.3, 429–440 (1957)

    Google Scholar 

  • Goldsmith, T.H., Wehner, R.: Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J. Gen. Physiol.70, 453–490 (1977)

    Google Scholar 

  • Grundler, O.J.: Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifera). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ummatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiologie9, 203–220 (1974)

    Google Scholar 

  • Herrling, P.L.: Regional distribution of three ultrastructural retinula types in the retina ofCataglyphis bicolor (Formicidae, Hymenoptera). Cell Tissue Res.169, 247–266 (1976)

    Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren. Kybernetik6, 13–22 (1969)

    Google Scholar 

  • Kirschfeld, K., Feiler, R., Franceschini, N.: A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. Comp. Physiol.125, 275–284 (1978)

    Google Scholar 

  • Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. Comp. Physiol.94, 1–6 (1974)

    Google Scholar 

  • McIntyre, P., Snyder, A.W.: Light propagation in twisted anisotropic media: Application to photoreceptors. J. Opt, Soc. Am.68, 149–157 (1978)

    Google Scholar 

  • Menzel, R.: Polarization sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 372–387. Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Menzel, R., Blakers, M.: Functional organization of an insect ommatidium with fused rhabdom. Cytobiologie11, 279–298 (1975)

    Google Scholar 

  • Menzel, R., Blakers, M.: Colour receptors in the bee eye. Morphology and spectral sensitivity. J. Comp. Physiol.108, 11–33 (1976)

    Google Scholar 

  • Menzel, R., Snyder, A.W.: Polarised light detection in the bee,Apis mellifera. J. Comp. Physiol.88, 247–270 (1974)

    Google Scholar 

  • Meyer-Rochow, V.B.: The eyes of mesopelagic crustaceans. II.Streetsia challengeri. Cell Tissue Res.186, 337–349 (1978)

    Google Scholar 

  • Miller, W.H., Cawthon, D.F.: Pigment granule movement inLimulus photoreceptors. Invest. Ophthalmol. Visual Sci.13, 401–405 (1974)

    Google Scholar 

  • Mote, M.I., Goldsmith, T.H.: Spectral sensitivities of color receptors in the compound eye of the cockroachPeriplaneta. J. Exp. Zool.173, 137–146 (1970)

    Google Scholar 

  • Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a damselfly. Z. Zellforsch.98, 17–32 (1969)

    Google Scholar 

  • Ribi, W.A.: A unique hymenopteran compound eye. The retina fine structure of the digger waspSphex cognatus (Hymenoptera, Sphecidae). Zool. Jahrb. Anat.100, 229–342 (1978)

    Google Scholar 

  • Smola, U.: Das “Twisten” der Rhabdomere der Sehzellen im Auge vonCalliphora erythrocephala. Verh. Dtsch. Zool. Ges.70, 234 (1977)

    Google Scholar 

  • Stavenga, D.G.: Pseudopupils of compound eyes. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, H. (ed.), pp. 357–439, Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  • Wachmann, E., Schröer, W.D.: Zur Morphologie des Dorsal- und Ventralauges des TaumelkäfersGyrinus substratius (Coleoptera, Gyrinidae). Zoomorphol.82, 43–62 (1975)

    Google Scholar 

  • Wehner, R.: Structure and function of the peripheral visual pathway in Hymenopterans. In: Neural principles in vision. Zettler, F., Weiler, R. (eds.), pp. 280–333. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Wehner, R., Bernard, G.D., Geiger, E.: Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J. Comp. Physiol.104, 225–245 (1975)

    Google Scholar 

  • Wolken, J.J., Capenos, P.D.J., Turano, A.: Photoreceptor structures. III.Drosophila melanogaster. J. Biophys. Biochem. Cytol.3, 441–448 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the University of Zürich (to RW), by grant 3.529.075 from the Swiss National Science Foundation (to RW) including a Senior Research Fellowship awarded to GDB, grants EY 01140 and EY 00785 from the National Eye Institute, U.S.P.H.S. (to GDB), and by the Connecticut Lions Eye Research Foundation (to GDB). Thomas Labhart took a keen and encouraging interest in this work and kindly allowed us to refer to his unpublished electrophysiological data. We thank him and all the institutions that supported this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehner, R., Bernard, G.D. Intracellular optical physiology of the bee's eye. J. Comp. Physiol. 137, 205–214 (1980). https://doi.org/10.1007/BF00657116

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657116

Keywords

Navigation