Skip to main content
Log in

How to determine high growth speeds in polymer crystallization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

With the fast crystallizing polymers HDPE and i-PP it is extremely difficult to extend the range of measurements of the growth speed of spherulites to temperatures as low as 80 °C. So far the lower limit for these measurements has been about 120 °C for both polymers. Several possibilities for this kind of measurements are explored in the present paper. It appears that none of these measurements is without uncertainties. So, only the comparison of results, as obtained with several independent measurements and with theory furnishes a sufficient credibility. Optical measurements, from light scattering to visual inspection, all under very special conditions of heat transfer, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padden FJ jr, Keith HD (1959) J Appl Phys 30:1479

    Google Scholar 

  2. Keith HD, Padden FJ jr, Walter NM, Wychoff HW (1959) J Appl Phys 30:1485

    Google Scholar 

  3. Turner-Jones A, Aizlewood JM, Backett DR (1964) Markromol Chem 74:134

    Google Scholar 

  4. Lovinger AJ, Chua JO, Gryte CC (1977) J of Polym Sci 15:641

    Google Scholar 

  5. von Falkai B (1960) Makromol Chem 41:86

    Google Scholar 

  6. Binsberger FL, de Lange BGM (1970) Polym 11:309

    Google Scholar 

  7. Mandelkern L, Jain NL, Kim H (1968) J Polymer Sci, Polym Phys, 6th ed, p 165

  8. Cheng SZD, Janimak JJ, Zhang A (1990) Macromolecules 23:298

    Google Scholar 

  9. Janimak JJ, Cheng SZD, Giusti PA (1990) Macromolecules 24:2253

    Google Scholar 

  10. Cheng SZD, Janimak JJ, Zhang A (1991) Polymer 32:649

    Google Scholar 

  11. Basset DC (1981) Principles of Polymer Morphology. Cambridge University Press, London, New York, Sydney, p 10

    Google Scholar 

  12. Chew, S, Griffiths JR, Stachurski ZH (1989) Polymer 30:874

    Google Scholar 

  13. Billon N, Escleine M, Haudin M (1994) Colloid Polym Sci 272:633

    Google Scholar 

  14. Van Krevelen DW (1978) Chimia 109:204

    Google Scholar 

  15. Leugering HJ (1967) Makromol Chemie 109:204

    Google Scholar 

  16. Eder G, Janeschitz-Kriegl H (1984) Polym Bulletin 11:93

    Google Scholar 

  17. Kurz W, Fischer DJ (1989) fundamentals of Solidification. Trans Tech Publication Switzerland-Germany-UK, USA

    Google Scholar 

  18. Wunderlich B (1973) Macromolecular Physic. Academic Press, New York

    Google Scholar 

  19. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Prog Polym Sci 15:629

    Google Scholar 

  20. Eder G, personal communication

  21. Berger J, Schneider W (1986) Rubber and Plastics Process Appl 6:127

    Google Scholar 

  22. Stefan J (1891) Ann Phy Chem, Wiedemann 42:269; see also Carslaw HC, Jaeger J (1959) Conduction of Heat in Solids, 2nd ed, Clarendon Press, Oxford

    Google Scholar 

  23. Stefan J, Sitzungsber (1889) Math Naturw CI, Akad Wissensch, Wien 98:473

    Google Scholar 

  24. Stefan J (1889) ibd 98:965

    Google Scholar 

  25. Schneider W, Köppl A, Berger J (1988) Int Polym Process 2:151

    Google Scholar 

  26. Eder G, Janeschitz-Kriegl H, Material Sci and Technology. Weinheim, Vol 18, in press

  27. Stein RS, Rhodes MB (1960) J Appl Phys 31:1873

    Google Scholar 

  28. Stein RS, Misra A (1973) J Polym Sci, Polym Phys 11th ed, p 109

  29. Keijzers AEM (1967) Doctoral Thesis, Delft Univ of Technol

  30. Keijzers AEM, van Aartsen JJ, Prins W (1968) J Amer Chem Soc 90:3107

    Google Scholar 

  31. Van Antwerpen F, van Krevelen DW (1972) J Polym Sci, Polym Phys 10th ed, p 2409

  32. Jerschow P, Janeschitz-Kriegl H, J Mat Sci, in press

  33. Schlünder EU (1972) Einführung in die Wärme- und Stoffübertragung Vieweg-Verlag, Braunschweig

    Google Scholar 

  34. Barham PJ, Jarvis DA, Keller A (1982) J Polym Sci, Polym Phys, 20th ed, p 1773

  35. Eder G, Fundamentals of Structure Formation in Crystallizing Polymers. InL Hatada K, Kitayama T, Vogl O (eds) Molecular Design of Polymetic Materials. Marcel Dekker, NY, in press

  36. Magill JM (1964) J Appl Phys 35:3249 Part I (1967) 5:89 Part II

    Google Scholar 

  37. Long Yu, Shanks RA, Stachurski ZH (1995) Prog Polym Sci 20:651

    Google Scholar 

  38. Olley RH, Bassett DC (1989) Polymer 30:399 and Bassett DC, Olley RH (1984) Polymer 25:935

    Google Scholar 

  39. Ferry JD (1980) Viscoelastic Properties of Polymers. John Wiley, New York

    Google Scholar 

  40. Van Krevelen DW (1990) Properties of Polymers. Elsevier, 3rd ed, p 600

  41. Struik LCE (1990) Internal Stresses, Dimensional Instabilities and Molecular Orientations in Plastics. John Wiley, West Sussex England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. D.W. van Krevelen, Arnhem

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratajski, E., Janeschitz-Kriegl, H. How to determine high growth speeds in polymer crystallization. Colloid Polym Sci 274, 938–951 (1996). https://doi.org/10.1007/BF00656623

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00656623

Key words

Navigation