Skip to main content
Log in

Thermodynamic properties and conductivities of some dodecylsurfactants in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities, heat capacities, enthalpies of dilution, osmotic coefficients and conductivities are reported for dodecylamine hydrochloride, dodecyldimethylammonium and dodecyltrimethylammonium chloride in water over a wide range of concentration. The last two properties were also measured for dodecyltrimethylammonium bromide. From the thermodynamic data partial molar volumes, heat capacities and relative enthalpies and nonideal free energies and entropies were derived as a function of the surfactant concentration. The cmc's and degree of counterion dissociation were also calculated from the transport properties. It is shown that the trends of volumes, enthalpies, free energies and entropies are quite regular whereas heat capacities present maxima and minima at concentrations which depend on the nature of surfactants. Corresponding changes were observed in the osmotic coefficients and specific conductivities. The thermodynamic functions of micellization were evaluated on the basis of the pseudo-phase transition model. Finally, the effects of the introduction of methyl groups in the hydrophilic moiety of the surfactant and of the nature of the counterion on the thermodynamic properties of monomers and micelles are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. De Lisi, V. Turco Liveri, M. Castagnolo and A. Inglese,J. Solution Chem. 15, 23 (1986).

    Google Scholar 

  2. R. De Lisi, A. Lizzio, S. Milioto and V. Turco Liveri,J. Solution Chem. 15, 623 (1986).

    Google Scholar 

  3. R. De Lisi, S. Milioto and V. Turco Liveri,J. Colloid Interface Sci. 117, 64 (1987).

    Google Scholar 

  4. R. De Lisi, S. Milioto, M. Castagnolo and A. Inglese,J. Solution Chem. 16, 373 (1986).

    Google Scholar 

  5. R. De Lisi and S. Milioto,J. Solution Chem. 16, 767 (1987).

    Google Scholar 

  6. S. Milioto and R. De Lisi,J. Colloid Interface Sci. 123, 92 (1988).

    Google Scholar 

  7. R. De Lisi and S. Milioto,J. Solution Chem. 17, 245 (1988).

    Google Scholar 

  8. S. Milioto, D. Romancino and R. De Lisi,J. Solution Chem. 16, 943 (1987).

    Google Scholar 

  9. R. De Lisi, E, Fisicaro and S. Milioto,J. Solution Chem. (submitted).

  10. R. Zana, S. Yiv, C. Strazielle and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).

    Google Scholar 

  11. D. M. Bloor, J. Gormally and E. Wynne-Jones,J. Chem. Soc., Faraday Trans. 80, 1915 (1984).

    Google Scholar 

  12. M. Aratono, T. Okamoto and K. Motomura,Bull. Chem. Soc. Jpn. 60, 2361 (1987).

    Google Scholar 

  13. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  14. M. F. Stimson, Am.J. Phys. 23, 614 (1955).

    Google Scholar 

  15. L. V. Dearden and E. M. Wooley,J. Phys. Chem. 91, 2404 (1987).

    Google Scholar 

  16. J. E. Lind Jr., J. J. Zwolenick, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1557 (1959).

    Google Scholar 

  17. G. J. Janz and J. D. E. McIntyre,J. Electrochem. Soc. 108, 72 (1961).

    Google Scholar 

  18. J. E. Desnoyers, R. De Lisi, C. Ostiguy, and G. Perron, inSolution Chemistry of Surfactants, Vol. 1, K. L. Mittal ed., (Plenum Press, New York, 1979).

    Google Scholar 

  19. H. C. Evans,J. Chem. Soc. 579, (1956).

  20. N. Nishikido,J. Colloid Interface Sci. 92, 588 (1983)

    Google Scholar 

  21. B. B. Owen and H. Zeldes,J. Phys. Chem. 18, 1083 (1950).

    Google Scholar 

  22. P. Lianos and R. Zana,J. Colloid Interface Sci. 84, 100 (1981).

    Google Scholar 

  23. C. Treiner,J. Colloid Interface Sci. 93, 33 (1983).

    Google Scholar 

  24. A. Malliaris, J. Le Moigne, J. Sturm and R. Zana,J. Phys. Chem. 89, 2709 (1985).

    Google Scholar 

  25. S. H. Herzfeld, M. L. Corrin, and W. D. Harkins,J. Phys. Chem. 54, 271 (1950).

    Google Scholar 

  26. I. V. Rao and E. Ruckenstein,J. Colloid Interf. Sci. 113, 375 (1986).

    Google Scholar 

  27. D. C. Robins and I. L. Thomas,J. Colloid Interface Sci. 26, 407 (1968).

    Google Scholar 

  28. R. B. Dorshow, C. A. Bunton, and D. F. Nicoli,J. Phys. Chem. 87, 1409 (1983).

    Google Scholar 

  29. E. Anacker and H. Ghose,J. Phys. Chem. 67, 1713 (1963).

    Google Scholar 

  30. G. Perron, N. Desrosiers, and J. E. Desnoyers, Canad.J. Chem. 54, 2163 (1979).

    Google Scholar 

  31. R. De Lisi, G. Perron, and J. E. Desnoyers, Canad.J. Chem. 58, 959 (1980).

    Google Scholar 

  32. K. M. Kale and R. Zana,J. Colloid Interface Sci. 61, 312 (1977).

    Google Scholar 

  33. J. E. Desnoyers, R. De Lisi, and G. Perron,Pure & Appl. Chem. 52, 433 (1980).

    Google Scholar 

  34. M. T. Bashford and E. M. Woolley,J. Phys. Chem. 89, 3173 (1985).

    Google Scholar 

  35. P. White and G. Benson,Trans. Faraday Soc. 54, 1025 (1959).

    Google Scholar 

  36. R. L. Berg,BERC/TPR-77/3, (Bartlesville Energy Research Center, Bartlesville, OK, 1977)

    Google Scholar 

  37. K. G. Gotz and K. Heckmann,J. Colloid Sci. 13, 206 (1958).

    Google Scholar 

  38. P. Ekwall, L. Mandell and P. Solyom,J. Colloid Interface Sci. 35, 519 (1971).

    Google Scholar 

  39. G. Lindblom, B. Lindman, and L. Mandell,J. Colloid Interface Sci. 42, 400 (1973).

    Google Scholar 

  40. P. Lianos and R. Zana,J. Colloid Interface Sci. 101, 587 (1984).

    Google Scholar 

  41. C. Treiner, A. K. Chattopadhyay, and R. Bury,J. Colloid Interface Sci. 104, 569 (1985).

    Google Scholar 

  42. F. Quirion and J. E. Desnoyers,J. Colloid Interface Sci. 112, 565 (1986).

    Google Scholar 

  43. R. De Lisi, S. Milioto, and R. Triolo,J. Solution Chem. (in press).

  44. H. Nery, J. P. Marchal, D. Canet, and J. M. Cases,J. Colloid Interface Sci. 77, 174 (1980).

    Google Scholar 

  45. R. De Lisi, C. Ostiguy, G. Perron, and J.E. Desnoyers,J. Colloid Interface Sci. 71, 147 (1979).

    Google Scholar 

  46. N. Rajagopalan, M. Vadnere, and S. Lindebaum,J. Solution Chem. 10, 785 (1981).

    Google Scholar 

  47. G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  48. R. De Lisi, C. Genova, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).

    Google Scholar 

  49. G. Roux-Desgranges, A. H. Roux, and A. Viallard,J. Chim. Phys. 82, 441 (1985).

    Google Scholar 

  50. T. E. Burchfield and E. M. Woolley,J. Phys. Chem. 88, 2149 (1984).

    Google Scholar 

  51. Y. F. Maa and S. H. Chen,J. Colloid Interface Sci. 115, 437 (1987).

    Google Scholar 

  52. J. E. Desnoyers, G. Caron, R. De Lisi, D. Roberts, A. H. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  53. L. V. Dearden and E. M. Woolley,J. Phys. Chem. 91, 4123 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Fisicaro, E. & Milioto, S. Thermodynamic properties and conductivities of some dodecylsurfactants in water. J Solution Chem 17, 1015–1041 (1988). https://doi.org/10.1007/BF00647799

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647799

Key words

Navigation