Skip to main content
Log in

The EOD sound response in weakly electric fish

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    A spontaneous EOD response to sound is described in two gymnotoids of the pulseElectricOrganDischarge (EOD) type,Hypopomus andGymnotus, and in one mormyrid,Brienomyrus (Figs. 2–4).

  2. 2.

    In all three species, the EOD response to the sound onset was a transient EOD rate increase. In the low EOD rateHypopomus (3–6 EODs/s at rest) the first, second, or third EOD interval following sound onset was significantly shorter than the average EOD interval before stimulation. The shortest latency found was 100 ms, the longest ca. 1.2 s.Gymnotus (around 50 EODs/s at rest) responded similarly, but the third interval after sound onset was the first to be affected even at highest intensities (shortest latencies approx. 60 ms; latencies > 0.5 s at low sound intensities). InBrienomyrus (4–8 EODs/s at rest) the response occurred already at the first EOD interval after sound onset.

  3. 3.

    An EOD sound response was recorded inHypopomus and inGymnotus up to 5,000 Hz sound frequency (in oneGymnotus individual: up to 7,000 Hz). Due to technical limitations the low frequency limit of the response could not be exactly determined: the fishes responded well even below 100 Hz.Hypopomus had its maximum sensitivity around 500 Hz (Fig. 5),Gymnotus around 1,000 Hz (Fig. 6).

  4. 4.

    In all three species the EOD sound response was graded with sound intensity (Hypopomus: Fig. 7).

  5. 5.

    No EOD response to sound was found in two gymnotoids of the wave type,Eigenmannia andApteronotus, and in the gymnotoid pulse fishRhamphichthys. A criterion is proposed by which it should be possible to predict whether or not a weakly electric fish species will show the EOD sound response.

  6. 6.

    It is concluded that the EOD response to sound is similar to EOD responses to other kinds of stimulation (light, touch, vibration, food, and even electrical). The possible biological function is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banner A (1967) Evidence of sensitivity to acoustic displacements in the lemon shark. In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 265–273

    Google Scholar 

  • Bauer R (1974) Electric organ discharge activity of resting and stimulatedGnathonemus petersii (Mormyridae). Behaviour 50:306–323

    Google Scholar 

  • Black-Cleworth P (1970) The role of electrical discharges in the non-reproductive social behavior ofGymnotus carapo L. (Gymnotidae, Pisces). Anim Behav Monogr 3:1–77

    Google Scholar 

  • Boutteville K von (1935) Untersuchungen über den Gehörsinn bei Characiniden und Gymnotiden und den Bau ihres Labyrinthes. Z Vergl Physiol 22:162–191

    Google Scholar 

  • Buerkle U (1968) Relations of pure tone thresholds to background noise level in the Atlantic codGadus morhua. J Fish Res Board Can 25:1150–1160

    Google Scholar 

  • Diesselhorst G (1938) Hörversuche an Fischen ohne Weberschen Apparat. Z Vergl Physiol 25:748–783

    Google Scholar 

  • Frisch K von (1936) Über den Gehörsinn der Fische. Biol Rev 11:210–246

    Google Scholar 

  • Frisch K von (1938) The sense of hearing in fish. Nature 141:8–11

    Google Scholar 

  • Grözinger B (1967) Elektro-physiologische Untersuchungen an der Hörbahn der Schleie (Tinca tinca (L.). Z Vergl Physiol 57:44–76

    Google Scholar 

  • Hagiwara S, Morita H (1963) Coding mechanisms of electroreceptor fibers in some electric fish. J Neurophysiol 25:430–449

    Google Scholar 

  • Hawkins AD (1973) The sensitivity of fish to sounds. Oceanogr Mar Biol Annu Rev 11:291–340

    Google Scholar 

  • Hawkins AD, Chapman CJ (1975) Masked auditory thresholds in the cod,Gadus morhua L. J Comp Physiol 103:209–226

    Google Scholar 

  • Hawkins AD, MacLennan DN (1976) An acoustic tank for hearing studies on fish. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam Oxford New York, pp 149–169

    Google Scholar 

  • Heiligenberg WF (1977) Principles of electrolocation and jamming avoidance in electric fish. Studies of brain function, vol 1. Springer, Berlin Heidelberg New York, pp 1–85

    Google Scholar 

  • Jäger U (1974) Geruchsrezeption und Entladungsaktivität bei dem schwachelektrischen FischGnathonemus petersii (Günther 1862) (Mormyridae, Teleostei). Diss Math-Nat Fak Univ Saarland, Saarbrücken (FRG)

    Google Scholar 

  • Kramer B (1976) The attack frequency ofGnathonemus petersii towards electrically silent (denervated) and intact conspecifics, and towards another mormyrid (Brienomyrus niger). Behav Ecol Sociobiol 1:425–446

    Google Scholar 

  • Kramer B, Kirschbaum F, Markl H (1981) Species specificity of electric organ discharges in a sympatric group of gymnotoid fish from Manaus (Amazonas). In: Szabo T, Czéh G (eds) Sensory physiology of lower aquatic vertebrates. Adv Physiol Sci, vol 31. Pergamon Press/Akademiai Kiadó, Budapest, pp 195–219

    Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • Lissmann HW (1961) Ecological studies on gymnotids. In: Chagas C, Paes de Carvalho A (eds) Bioelectrogenesis. Elsevier, Amsterdam Oxford New York, pp 215–226

    Google Scholar 

  • Markl H, Ehret G (1973) Die Hörschwelle der Maus (Mus musculus). Eine kritische Wertung der Methoden zur Bestimmung der Hörschwelle eines Säugetieres. Z Tierpsychol 33:274–286

    Google Scholar 

  • Piddington RW (1972) Auditory discrimination between compressions and rarefactions by goldfish. J Exp Biol 56:403–419

    Google Scholar 

  • Popper AN, Fay RR (1973) Sound detection and processing by teleost fishes: a critical review. J Acoust Soc Am 53:1515–1529

    Google Scholar 

  • Réthelyi M, Szabo T (1973) A particular nucleus in the mesencephalon of a weakly electric fish,Gymnotus carapo (Gymnotidae). 1. Light microscopic structure. Exp Brain Res 17:229–241

    Google Scholar 

  • Rigley L, Marshall JA (1973) Sound production by the elephant nose fish,Gnathonemus petersii (Pisces, Mormyridae). Copeia 1973(1):134–136

    Google Scholar 

  • Schade R (1971) Experimentelle Untersuchungen zum Hörvermögen anLeucaspius delineatus. Biol Zentralbl 90:337–356

    Google Scholar 

  • Scheich H, Gottschalk B, Nickel B (1977) The jamming avoidance response inRhamphichthys rostratus: An alternative principle of time domain analysis in electric fish. Exp Brain Res 28:229–233

    Google Scholar 

  • Schlegel PA (1977) Electroreceptive single units in the mesencephalic magnocellular nucleus of the weakly electric fishGymnotus carapo. Exp Brain Res 29:201–218

    Google Scholar 

  • Schwartzkopff J (1976) Comparative-physiological problems of hearing in fish. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam Oxford New York, pp 3–17

    Google Scholar 

  • Stipetić E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752

    Google Scholar 

  • Szabo T (1967) Activity of peripheral and central neurons involved in electroreception. In: Cahn P (ed) Lateral line detectors. Univ Indiana Press, Bloomington, pp 295–311

    Google Scholar 

  • Tautz J (1979) Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461

    Google Scholar 

  • Tavolga WN (1967) Masked auditory thresholds in teleost fishes. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon Press, Oxford New York, pp 233–245

    Google Scholar 

  • Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic Press, New York, pp 135–205

    Google Scholar 

  • Tavolga WN (1976) Recent advances in the study of fish audition. In: Tavolga WN (ed) Sound reception in fishes. Benchmark papers in animal behavior, vol 7. Dowden, Hutchinson and Ross, Stroudsberg, Philadelphia, pp 37–52

    Google Scholar 

  • Veit I (1977) Ein kleines Druckgradientenhydrofon zur Messung der Schallschnelle in Flüssigkeiten. Akustika 38:72–75

    Google Scholar 

  • Westby GWM (1975) Has the latency-dependent response ofGymnotus carapo to discharge-triggered stimuli a bearing on electric fish communication? J Comp Physiol 96:307–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Dr. J. Kien (University of Regensburg), Dr. F. Kirschbaum (University of Köln), and Dr. G.W.M. Westby (University of Sheffield) for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (grants Kr 446/8, Ma 374/10). We wish to thank the computer centre and the mechanical, the electronical, and the carpentry workshop of the University of Konstanz for excellent aid. It is a pleasure to acknowledge the expert technical assistance of H.-J. Burger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, B., Tautz, J. & Markl, H. The EOD sound response in weakly electric fish. J. Comp. Physiol. 143, 435–441 (1981). https://doi.org/10.1007/BF00609910

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609910

Keywords

Navigation