Skip to main content
Log in

Crayfish escape behavior

I. The structure of efferent and afferent neurons involved in abdominal extension

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Cobalt staining was used to construct soma maps and study the cellular anatomy of efferent neurons involved in extension of the crayfish,Procambarus clarkii, abdomen.

  2. 2.

    Approximately 300 neurons are described in the ten ganglia from Thoracic 4 (T4) to Abdominal 5 (A5). In most hemiganglia, 17 neurons send processes out the 2nd abdominal root to innervate the extensor muscles and their associated muscle receptor organs (MROs) (Figs. 4, 10).

  3. 3.

    Thirteen of the neurons have axons in the 2nd root of their own ganglion. Five of these are hypothesized to correspond to the phasic extensor motoneurons and five to the tonic extensor motoneurons (Fig. 4); evidence suggests that two contralateral neurons are the peripheral inhibitors to the phasic and tonic muscles respectively. A very small contralateral neuron of unknown function is also seen.

  4. 4.

    Four of the neurons send their axons out the 2nd root of the next anterior ganglion and may be efferent control neurons of the MROs (Fig. 10).

  5. 5.

    Departures from serial homology occur as follows: the more rostral thoracic ganglia and A5 have fewer than 17 neurons, while T7 and T8 contain several cells not seen elsewhere (Figs. 13, 14).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrowicz, J.S.: Muscle receptor organs in the abdomen ofHomarus vulgaris andPalinurus vulgaris. Quart. J. micr. Sci.92, 163–199 (1951)

    Google Scholar 

  • Alexandrowicz, J.S.: Receptor elements in the thoracic muscles ofHomarus vulgaris andPalinurus vulgaris. Quart. J. micr. Sci.93, 315–346 (1952)

    Google Scholar 

  • Alexandrowicz, J.S.: Receptor organs in thoracic and abdominal muscles of crustacea. Biol. Rev.42, 288–326 (1967)

    Google Scholar 

  • Allen, E.J.: Studies on the nervous system of crustacea. I. Some nerve elements of the embryonic lobster. Quart. J. micr. Sci.36, 461–482 (1894)

    Google Scholar 

  • Allen, E.J.: Studies on the nervous systems of crustacea. IV. Further observations on the nerve elements of the embryonic lobster. Quart. J. micr. Sci.39, 33–50 (1896)

    Google Scholar 

  • Barker, D.L., Herbert, E., Hildebrand, J.G., Kravitz, E.A.: Acetylcholine and lobster sensory neurones. J. Physiol.226, 205–229 (1972)

    Google Scholar 

  • Camhi, J.M., Hinkle, M.: Attentiveness to sensory stimuli: central control in locusts. Science175, 550–553 (1972)

    Google Scholar 

  • Eckert, R.O.: Reflex relationships of the abdominal stretch receptors of the crayfish. I. Feedback inhibition of the receptors. J. cell. comp. Physiol.57, 149–162 (1961)

    Google Scholar 

  • Fields, H.L.: Proprioceptive control of posture in crayfish abdomen. J. exp. Biol.44, 455–468 (1966)

    Google Scholar 

  • Fields, H.L., Evoy, W.H., Kennedy, D.: The reflex role played by efferent control of an invertebrate stretch receptor. J. Neurophysiol.30, 859–874 (1967)

    Google Scholar 

  • Fields, H.L., Kennedy, D.: Functional role of muscle receptor organs in crayfish. Nature106, 1232–1237 (1965)

    Google Scholar 

  • Furshpan, E.J., Potter, D.D.: Transmission at the giant motor synapses of the crayfish. J. Physiol.145, 289–325 (1959)

    Google Scholar 

  • Goodman, C.: Anatomy of locust ocellar neurons: constancy and variability. J. comp. Physiol.95, 185–201 (1974)

    Google Scholar 

  • Hoy, R.R.: Degeneration and regeneration in abdominal flexor motor neurons in the crayfish. J. exp. Zool.172, 219–232 (1969)

    Google Scholar 

  • Hoy, R.R., Bittner, G.D., Kennedy, D.: Regeneration in crustacean motoneurons: evidence for axonal fusion. Science156, 251–252 (1967)

    Google Scholar 

  • Hughes, G.M., Wiersma, C.A.G.: Neuronal pathways and synaptic connections in the abdominal cord of the crayfish. J. exp. Biol.37, 291–307 (1960)

    Google Scholar 

  • Iles, J.F., Mulloney, B.: Procion yellow staining of cockroach motor neurones without the use of microelectrodes. Brain Res.30, 397–400 (1971)

    Google Scholar 

  • Jansen, J.K.S., Njå, A., Ormstad, K., Walløe, E.: On the innervation of the slowly adapting stretch receptor of the crayfish abdomen. An electrophysiological approach. Acta physiol. scand.81, 273–285 (1971)

    Google Scholar 

  • Jansen, J.K.S., Njä, A., Walløe, L.: Inhibitory control of the abdominal stretch receptors of the crayfish. II. Reflex input, segmental distribution, and output relations. Acta physiol. scand.80, 443–449 (1970)

    Google Scholar 

  • Kennedy, D.: Neural elements in relation to network function. In: Simpler networks and behavior (ed. J.C. Fentress), pp. 65–81. Sunderland, Mass.: Sinauer 1976

    Google Scholar 

  • Kennedy, D., Evoy, W.H., Fields, H.E.: The unit basis of some crustacean reflexes. Symp. Soc. exp. Biol.20, 75–109 (1966)

    Google Scholar 

  • Kennedy, D., Selverston, A.I., Remler, M.P.: Analysis of restricted neural networks. Science164, 1488–1496 (1969)

    Google Scholar 

  • Kuffler, S.W., Eyzaguirre, C.: Synaptic inhibition in an isolated nerve cell. J. gen. Physiol.39, 155–185 (1955)

    Google Scholar 

  • Larimer, J.L., Eggleston, A.C., Masukawa, E.M., Kennedy, D.: The different connections and motor outputs of lateral and medial giant fibres in the crayfish. J. exp. Biol.54, 391–402 (1971)

    Google Scholar 

  • Larimer, J.L., Kennedy, D.: Innervation patterns of fast and slow muscle in the uropods of crayfish. J. exp. Biol.51, 119–133 (1969)

    Google Scholar 

  • Mittenthal, J.E., Wine, J.J.: Connectivity patterns of crayfish giant interneurons: visualization of synaptic regions with cobalt dye. Science179, 182–184 (1973)

    Google Scholar 

  • Mittenthal, J.E., Wine, J.J.: Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J. comp. Neurol., in press (1977)

  • Nakajima, Y., Tisdale, A.D., Henkart, M.P.: Presynaptic inhibition at inhibitory nerve terminals. A new synapse in the crayfish stretch receptor. Proc. nat. Acad. Sci.70, 2462–2466 (1973)

    Google Scholar 

  • Nordlander, R.H., Singer, M.: Degeneration and regeneration of severed crayfish sensory fibers: An ultrastructural study. J. comp. Neurol.152, 175–192 (1974)

    Google Scholar 

  • Otsuka, M., Kravitz, E.A., Potter, D.D.: Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J. Neurophysiol.30, 725–752 (1967)

    Google Scholar 

  • Parnas, L., Atwood, H.E.: Phasic and tonic neuromuscular systems in the abdominal extensor muscles of the crayfish and rock lobster. Comp. Biochem. Physiol.18, 701–723 (1966)

    Google Scholar 

  • Pitman, R.M., Tweedle, D.C., Cohen, M.J.: Branching of central neurons: Intracellular cobalt injection for light and electron microscopy. Science176, 412–414 (1972)

    Google Scholar 

  • Selverston, A.I., Remler, M.P.: Neural geometry and activation of crayfish fast flexor motoneurons. J. Neurophysiol.35, 797–814 (1972)

    Google Scholar 

  • Sokolove, P.G.: Crayfish stretch receptor and motor unit behaviour during abdominal extensions. J. comp. Physiol.84, 251–266 (1973)

    Google Scholar 

  • Sokolove, P.G., Tatton, W.G.: Analysis of postural motoneuron activity in crayfish abdomen. I. Coordination by premotoneuron connections. J. Neurophysiol.38, 313–331 (1975)

    Google Scholar 

  • Somers, M.E., Nunnemacher, R.F.: Microanatomy of the ganglionic roots of the abdominal cord of the crayfish,Orconectes virilis (Gagen). J. comp. Neurol.138, 209–218 (1970)

    Google Scholar 

  • Strausfeld, N.J., Obermayer, M.: Resolution of intraneuronal and transynaptic migration of cobalt in the insect visual and central nervous systems. J. comp. Physiol.110, 1–12 (1976)

    Google Scholar 

  • Takeda, K., Kennedy, D.: Soma potentials and modes of activation of crayfish motoneurons. J. cell. comp. Physiol.64, 165–182 (1964)

    Google Scholar 

  • Tatton, W.G., Sokolove, P.G.: Analysis of postural motoneuron activity in crayfish abdomen. II. Coordination by excitatory and inhibitory connections between motoneurons. J. Neurophysiol.38, 332–346 (1975)

    Google Scholar 

  • Treistman, S.N., Remler, M.P.: Extensor motor neurons of the crayfish abdomen. J. comp. Physiol.100, 85–100 (1975)

    Google Scholar 

  • Tyrer, N.M., Bell, E.M.: The intensification of profiles of cobalt-injected neurones in sectioned material. Brain Res.73, 151–155 (1974)

    Google Scholar 

  • Van Harreveld, A.: A physiological solution for fresh water crustaceans. Proc. Soc. exp. Biol. (N.Y.)34, 428–432 (1936)

    Google Scholar 

  • Wiens, T.J.: Electrical and structural properties of crayfish claw motoneurons in an isolated clawganglion preparation. J. comp. Physiol.112, 213–233 (1976)

    Google Scholar 

  • Wiersma, C.A.G.: Giant nerve fiber system of the crayfish. A contribution to comparative physiology of synapse. J. Neurophysiol.10, 23–38 (1947)

    Google Scholar 

  • Wiersma, C.A.G.: Reflexes and the central nervous system. In: The physiology of crustacea (ed. T.H. Waterman), pp. 241–279. New York: Academic Press 1961

    Google Scholar 

  • Wiersma, C.A.G., Furshpan, E., Florey, E.: Physiological and pharmacological observations on muscle receptor organs of the crayfish,Cambarus clarkii Girard. J. exp. Biol.30, 136–150 (1953)

    Google Scholar 

  • Wiersma, C.A.G., Hughes, G.M.: On the functional anatomy of neuronal units in the abdominal cord of the crayfish,Procambarus clarkii Girard. J. comp. Neurol.116, 209–228 (1961)

    Google Scholar 

  • Wiersma, C.A.G., Pilgrim, R.L.C.: Thoracic stretch receptors in crayfish and rocklobster. Comp. Biochem. Physiol.2, 51–64 (1961)

    Google Scholar 

  • Wine, J.J.: Invertebrate central neurons: orthograde degeneration and retrograde changes after axonotomy. Exp. Neurol.38, 157–169 (1973)

    Google Scholar 

  • Wine, J.J.: Crayfish escape behavior. II. Command-derived inhibition of abdominal extension. J. comp. Physiol.121, 173–186 (1977a)

    Google Scholar 

  • Wine, J.J.: Crayfish escape behavior. III. Monosynaptic and polysynaptic sensory pathways involved in phasic extension. J. comp. Physiol.121, 187–203 (1977b)

    Google Scholar 

  • Wine, J.J., Hagiwara, G.: Durations of unitary synaptic potential help time a behavioral sequence. Science, in press

  • Wine, J.J., Mistick, D.: The temporal organization of crayfish escape behavior: delayed recruitment of peripheral inhibition. J. Neurophysiol.40, 904–925 (1977)

    Google Scholar 

  • Wine, J.J., Mittenthal, J.E., Kennedy, D.: The structure of tonic flexor motoneurons in crayfish abdominal ganglia. J. comp. Physiol.93, 315–335 (1974)

    Google Scholar 

  • Zucker, R.S.: Crayfish escape behavior and central synapses. III. Electrical junctions and dendrite spikes in fast flexor motoneurons. J. Neurophysiol.35, 638–651 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. C.A.G. Wiersma on the occasion of his 70th birthday

Supported by N.S.F. Grant BNS 75-17826. We thank D. Kennedy for the loan of equipment, D. Mistick for criticism, and Cecilia Bahlman for preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wine, J.J., Hagiwara, G. Crayfish escape behavior. J. Comp. Physiol. 121, 145–172 (1977). https://doi.org/10.1007/BF00609609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609609

Keywords

Navigation