Skip to main content
Log in

Respiratory response to arterial H+ at different levels of arterial\(P_{{\text{CO}}_{\text{2}} } \) during hyperoxia or hypoxia

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Experiments were carried out in 12 dogs anesthetized with halothane of constant alveolar concentration (mean: 0.89%). The ventilatory response to arterial\(P_{{\text{CO}}_{\text{2}} } \) with hyperoxia was determined in metabolic acidosis (by infusion of 0.5 N HCl solution). The ventilatory response to arterial\(P_{{\text{CO}}_{\text{2}} } \) with constant hypoxia (about 50 mm Hg arterial\(P_{{\text{O}}_{\text{2}} } \)) was determined in both metabolic acidosis and alkalosis (by infusion of 1 M NaHCO3 solution).

The arterial H+-ventilation response curve was obtained at different constant levels of\(P_{{\text{CO}}_{\text{2}} } \) by simultaneous analysis of the\(P_{{\text{CO}}_{\text{2}} } \)-H+ diagram and the\(P_{{\text{CO}}_{\text{2}} } \)-ventilation response curve. Ventilation in hyperoxia was largely dependent on\(P_{{\text{CO}}_{\text{2}} } \) if acid-base balance was near normal, but became independent of\(P_{{\text{CO}}_{\text{2}} } \) and dependent on arterial H+ as this increased. It was postulated that this was partly due to the negative interaction between\(P_{{\text{CO}}_{\text{2}} } \) and H+. The H+-ventilation response curves showed the same pattern in hypoxia, but only on the alkalotic side. However, with hypoxia in the range of normal to acidotic condition, control of ventilation was mainly dependent on H+ and independent of\(P_{{\text{CO}}_{\text{2}} } \); this implies an interaction between hypoxia and H+ at the peripheral chemoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beneken Kolmer, H. H., Kreuzer, F.: Continuous polarographic recording of oxygen pressure in respiratory air. Respir. Physiol.4, 109–117 (1968).

    Google Scholar 

  • Bjurstedt, A. G. H.: Interaction of centrogenic and chemoreflex control of breathing during oxygen deficiency at rest. Acta physiol. scand.12, 1–88 (1946).

    Google Scholar 

  • Bradley, R. D., Semple, S. J. G.: A comparison of certain acid-base characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances. J. Physiol. (Lond.)160, 381–391 (1962).

    Google Scholar 

  • Brandstater, B., Eger II, E. I., Edelist, G.: Constant-depth halothane anesthesia in respiratory studies. J. appl. Physiol.20, 171–174 (1965).

    Google Scholar 

  • Burnap, T. K., Galla, S. J., Vandam, L. D.: Anesthetic, circulatory and respiratory effects of fluothane. Anesthesiology19, 307–320 (1958).

    Google Scholar 

  • Chazan, J. A., Appleton, F. M., London, A. M., Schwartz, W. B.: Effects of chronic metabolic acid-base disturbances on the composition of cerebrospinal fluid in the dog. Clin. Sci.36 345–358 (1969).

    Google Scholar 

  • Cormack, R. S., Cunningham, D. J. C., Gee, J. B. L.: The effect of carbon dioxide on the respiratory response to want of oxygen in man. Quart. J. exp. Physiol.42, 303–319 (1957).

    Google Scholar 

  • Domizi, D. B., Perkins, J. F., Jr., Byrne, J. S.: Vnetilatory response to fixed acid evaluated by ‘iso-\(P_{{\text{CO}}_{\text{2}} } \)‘ technique. J. appl. Physiol.14, 557–561 (1959).

    Google Scholar 

  • Eyzaguirre, C., Lewin, J.: Chemoreceptor activity of the carotid body of the cat. J. Physiol. (Lond.)159, 222–237 (1961).

    Google Scholar 

  • Gemmill, C. L., Reeves, D. L.: The effect of anoxemia in normal dogs before and after denervation of the carotid sinuses. Amer. J. Physiol.105, 487–495 (1933).

    Google Scholar 

  • Gesell, R., Lapides, J., Levin, M.: The interaction of central and peripheral chemical control of breathing. Amer. J. Physiol.130, 155–170 (1940).

    Google Scholar 

  • Gray, B. A.: Response of the perfused carotid body to changes in pH and\(P_{{\text{CO}}_{\text{2}} } \). Respir. Physiol.4, 229–245 (1968).

    Google Scholar 

  • Gray, J. S.: Pulmonary ventilation and its physiological regulation, pp. 1–82. Springfield: Ch. C. Thomas 1950.

    Google Scholar 

  • Hamilton, R. W., Jr., Brown, E. B., Jr.: Carbon dioxide, oxygen, and acidity: The interaction and independent effects on breathing of these factors in the arterial blood. In: Report of USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, pp. 1–42. Texas 1964.

  • Honda, Y., Natsui, T.: Effect of sleep on ventilatory response to CO2 in severe hypoxia. Respir. Physiol.3, 220–228 (1967).

    Google Scholar 

  • ——, Hasumura, N.: Analysis of ventilatory response to CO2 during hypoxia in dogs. J. appl. Physiol.20, 839–843 (1965).

    Google Scholar 

  • Hornbein, T. F., Griffo, Z. J., Roos, A.: Quantitation of chemoreceptor activity: Interrelation of hypoxia and hypercapnia. J. Neurophysiol.24, 561–568 (1961).

    Google Scholar 

  • —, Roos, A.: Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. appl. Physiol.18, 580–584 (1963).

    Google Scholar 

  • Jacobs, M. H.: The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Amer. J. Physiol.53, 457–463 (1920).

    Google Scholar 

  • Joels, N., Neil, E.: The influence of anoxia and hypercapnia, separately and in combination, on chemoreceptor impulse discharge. J. Physiol. (Lond.)155, 45–46 (1961).

    Google Scholar 

  • Katsaros, B., Loeschcke, H. H., Lerche, D., Schönthal, H., Hahn, N.: Wirkung der Bicabonat-Alkalose auf die Lungenbelüftung beim Menschen. Bestimmung der Teilwirkung von pH und CO2-Druck auf die Ventilation und Vergleich mit den Ergebnissen bei Acidose. Pflügers Arch. ges. Physiol.271, 732–747 (1960).

    Google Scholar 

  • Kreuzer, F., Rogeness, G. A., Bornstein, P.: Continuous recording in vivo of respiratory air oxygen tension. J. appl. Physiol.15, 1157–1158 (1960).

    Google Scholar 

  • Lambertsen, C. J., Smyth, M. G., Semple, S. J. G., Gelfand, R.: Respiratory effects in normal men of blood pH changes at “constant” arterial and internal jugular venous\(P_{{\text{CO}}_{\text{2}} } \). Fed. Proc.17, 92 (1958).

    Google Scholar 

  • Lerche, D., Katsaros, B., Lerche, G., Loeschcke, H. H.: Vergleich der Wirkung verschiedener Acidosen (NH4Cl, CaCl2, Acetazolamid) auf die Lungenbelüftung beim Menschen. Pflügers Arch. ges. Physiol.270, 450–460 (1960).

    Google Scholar 

  • Loeschcke, H. H.: On specificity of CO2 as a respiratory stimulus. Bull. Physio-path. resp.5, 13–25 (1969).

    Google Scholar 

  • —, Gertz, K. H.: Einfluß des O2-Druckes in der Einatmungsluft auf die Atemtätigkeit des Menschen, geprüft unter Konstanthaltung des alveolaren CO2-Druckes. Pflügers Arch. ges. Physiol.267, 460–477 (1958).

    Google Scholar 

  • —, Katsaros, B., Lerche, D.: Differenzierung der Wirkung von CO2-Druck und Wasserstoffionenkonzentration im Blut auf die Atmung beim Menschen. Pflügers Arch. ges. Physiol.270, 461–466 (1960).

    Google Scholar 

  • —, Koepchen, H. P., Gertz K. H.: Über den Einfluß von Wasserstoffionenkonzentration und CO2-Druck im liquor cerebrospinalis auf die Atmung. Pflügers Arch. ges. Physiol.266, 569–585 (1958).

    Google Scholar 

  • —, Mitchell, R. A.: Properties and localisation of intracranial chemosensitivity. In: The Regulation of Human Respiration, pp. 243–256. Ed. by. D. J. C. Cunningham and B. B. Lloyd. Oxford: Blackwell Scient. 1963.

    Google Scholar 

  • ——, Katsaros, B., Perkins, J. F., Jr., Konig, A. Interaction of intracranial chemosensitivity with peripheral afferents to the respiratory centers. Ann. N.Y. Acad. Sci.109, 651–659 (1963).

    Google Scholar 

  • Metz, B., Bernthal, T.: Interaction of respiratory drives. Fed. Proc.12, 99 (1953).

    Google Scholar 

  • Mitchell, R. A.: Cerebrospinal fluid and the regulation of respiration. In: Advances in Respiratory Physiology, pp. 1–47. Ed. by. C. G. Caro. London: E. Arnold 1966.

    Google Scholar 

  • Natsui, T.: Respiratory response to hypoxia with hypocapnia or normocapnia and to CO2 in hypothermic dogs. Respir. Physiol.7, 188–202 (1969).

    Google Scholar 

  • Nielsen, M., Smith, H.: Studies on the regulation of respiration in acute hypoxia. Acta physiol. scand.24, 293–313 (1952).

    Google Scholar 

  • Otey, E. S., Bernthal, T.: Interaction of hypoxia and hypercapnia at the carotid bodies in chemoreflex stimulation of breathing. Fed. Proc.19, 373 (1960).

    Google Scholar 

  • Perkins, J. F., Jr.: The contribution of the peripheral respiratory chemoreceptors to pulmonary ventilation—A historical and experimental approach. In: Arterial Chemoreceptors, pp. 335–352. Ed. by R. W. Torrance. Oxford: Blackwell, Scient. 1968.

    Google Scholar 

  • Robin, E. D., Whaley, R. D., Crump, C. H., Bickelmann, A. G., Travis, D. M.: Acid-base relations between spinal fluid and arterial blood with special reference to control of ventilation. J. appl. Physiol.13, 385–392 (1958).

    Google Scholar 

  • Saito, K., Honda, Y., Hasumura, H.: Evaluation of respiratory response to changes in\(P_{{\text{CO}}_{\text{2}} } \) and hydrogen ion concentration of arterial blood in rabbits and dogs. Jap. J. Physiol.10, 634–645 (1960).

    Google Scholar 

  • Schuler, H., Kreuzer, F.: Rapid polarographic in vivo oxygen catheter electrodes. Respir. Physiol.3, 90–110 (1967).

    Google Scholar 

  • Severinghaus, J. W., Larson, C. P., Jr.: Respiration in anesthesia. In: Handbook of Physiology, vol. 2 (Respiration section), pp. 1219–1264. Ed. by W. O. Fenn and H. Rahn. Baltimore: The Williams & Wilkins Co. 1965.

    Google Scholar 

  • Wiemer, W., Ott, N., Winterstein, H.: Reflektorische und zentrale Anteile der O2-Mangel- und CO2-Hyperpnoe des Kaninchens. Z. Biol.114, 230–264 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsui, T. Respiratory response to arterial H+ at different levels of arterial\(P_{{\text{CO}}_{\text{2}} } \) during hyperoxia or hypoxia. Pflugers Arch. 316, 34–50 (1970). https://doi.org/10.1007/BF00587895

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587895

Key-Words

Schlüsselwörter

Navigation