Skip to main content
Log in

Acute sodium bicarbonate administration improves ventilatory efficiency in experimental respiratory acidosis: clinical implications

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Administering sodium bicarbonate (NaHCO3) to patients with respiratory acidosis breathing spontaneously is contraindicated because it increases carbon dioxide load and depresses pulmonary ventilation. Nonetheless, several studies have reported salutary effects of NaHCO3 in patients with respiratory acidosis but the underlying mechanism remains uncertain. Considering that such reports have been ignored, we examined the ventilatory response of unanesthetized dogs with respiratory acidosis to hypertonic NaHCO3 infusion (1 N, 5 mmol/kg) and compared it with that of animals with normal acid-base status or one of the remaining acid-base disorders. Ventilatory response to NaHCO3 infusion was evaluated by examining the ensuing change in PaCO2 and the linear regression of the PaCO2 vs. pH relationship. Strikingly, PaCO2 failed to increase and the ΔPaCO2 vs. ΔpH slope was negative in respiratory acidosis, whereas PaCO2 increased consistently and the ΔPaCO2 vs. ΔpH slope was positive in the remaining study groups. These results cannot be explained by differences in buffering-induced decomposition of infused bicarbonate or baseline levels of blood pH, PaCO2, and pulmonary ventilation. We propose that NaHCO3 infusion improved the ventilatory efficiency of animals with respiratory acidosis, i.e., it decreased their ratio of total pulmonary ventilation to carbon dioxide excretion (VE/VCO2). Such exclusive effect of NaHCO3 infusion in animals with respiratory acidosis might emanate from baseline increased VD/VT (dead space/tidal volume) caused by bronchoconstriction and likely reduced pulmonary blood flow, defects that are reversed by alkali infusion. Our observations might explain the beneficial effects of NaHCO3 reported in patients with acute respiratory acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Adrogué HJ, Awan AA, Madias NE (2020) Sodium fate after sodium bicarbonate infusion: influence of altered acid-base status. Am J Nephrol 51:182–191

    Article  PubMed  Google Scholar 

  2. Adrogué HJ, Awan AA, Madias NE (2022) Determinants of hypokalemia following hypertonic sodium bicarbonate infusion. Pflugers Arch 474:603–612

    Article  PubMed  Google Scholar 

  3. Adrogué HJ, Brensilver J, Cohen JJ, Madias NE (1983) Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 71:867–883

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adrogué HJ, Madias NE (1986) Renal acidification during chronic hypercapnia in the conscious dog. Pflugers Arch 406:520–528

    Article  PubMed  Google Scholar 

  5. Adrogué HJ, Madias NE (2005) Respiratory Acidosis. In: Gennari FJ, Adrogué HJ, Galla JH, Madias NE (eds) Acid-Base Disorders and Their Treatment. Taylor & Francis, Boca Raton pp 597–639

    Google Scholar 

  6. Adrogué HJ, Madias NE (2010) Secondary responses to altered acid-base status: the rules of engagement. J Am Soc Nephrol 21:920–923

    Article  PubMed  Google Scholar 

  7. Adrogué HJ, Madias NE (2020) Alkali therapy for respiratory acidosis: a medical controversy. Am J Kidney Dis 75:265–275

    Article  PubMed  Google Scholar 

  8. Adrogué HJ, Mandayam S, Tighiouart H, Madias NE (2019) Osmotic and nonosmotic sodium storage during acute hypertonic sodium loading. Am J Nephrol 50:11–18

    Article  PubMed  Google Scholar 

  9. Adrogué HJ, Tobin MJ (1997) Blackwell’s Basics of Medicine: Respiratory Failure. Blackwell Science, Cambridge, Massachusetts p 93

    Google Scholar 

  10. Ahmed T, Iskandrani A, Uddin MN (2000) Sodium bicarbonate solution nebulization in the treatment of acute severe asthma. Am J Ther 7:325–327

    Article  CAS  PubMed  Google Scholar 

  11. Arena R, Myers J, Aslan SS et al (2004) Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J 147:354–360

    Article  PubMed  Google Scholar 

  12. Aslan S, Kandis H, Akgun M et al (2006) The effect of nebulized NaHCO3 treatment on “RADS” due to chlorine gas inhalation. Inhal Toxicol 18:895–900

    Article  CAS  PubMed  Google Scholar 

  13. Broadman J, Jensen D (2021) Effect of induced acute metabolic alkalosis on the VE/VCO2 response to exercise in healthy adults. Respir Physiol Neurobiol 294:103740

    Article  CAS  PubMed  Google Scholar 

  14. Brogan TV, Robertson HT, Lamm WJ et al (2004) Carbon dioxide added late in inspiration reduces ventilation-perfusion heterogeneity without causing respiratory acidosis. J Appl Physiol 96:1894–1898

    Article  PubMed  Google Scholar 

  15. Buysse CM, de Jongste JC, de Hoog M (2005) Life-threatening asthma in children: treatment with sodium bicarbonate reduces PCO2. Chest 127:866–870

    Article  CAS  PubMed  Google Scholar 

  16. Chand R, Swenson ER, Goldfarb DS (2021) Sodium bicarbonate therapy for acute respiratory acidosis. Curr Opin Nephrol Hypertens 30:223–230

    Article  CAS  PubMed  Google Scholar 

  17. De Sousa RC, Harrington JT, Ricanati ES, Shelkrot JW, Schwartz WB (1974) Renal regulation of acid-base equilibrium during chronic administration of mineral acid. J Clin Invest 53:465–476

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gennari FJ, Goldstein MB, Schwartz WB (1972) The nature of the renal adaptation to chronic hypocapnia. J Clin Invest 51:1722–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirota K, Yoshioka H, Kabara S et al (2001) A comparison of the relaxant effects of olprinone and aminophylline on methacholine-induced bronchoconstriction in dogs. Anesth Analg 93:230–233

    Article  CAS  PubMed  Google Scholar 

  20. Horwitz LD, Bishop YS, Stone HL (1968) Effects of hypercapnia on the cardiovascular system of conscious dogs. J Appl Physiol 25:346–348

    Article  Google Scholar 

  21. Ingram RH Jr (1975) Effects of airway versus arterial CO2 changes on lung mechanics in dogs. J Appl Physiol 38:603–607

    Article  PubMed  Google Scholar 

  22. Iwaoka K, Okagawa S, Mutoh Y et al (1989) Effects of bicarbonate ingestion on the respiratory compensation threshold and maximal exercise performance. Jpn J Physiol 39:255–265

    Article  CAS  PubMed  Google Scholar 

  23. Javaheri S (2005) Determinants of carbon dioxide tension. In: Gennari FJ, Adrogué HJ, Galla JH, Madias NE (eds) Acid-Base Disorders and Their Treatment. Taylor & Francis, Boca Raton pp 47–77

    Chapter  Google Scholar 

  24. Jennings DB, Davidson JSD (1984) Acid-base and ventilatory adaptation in conscious dogs during chronic hypercapnia. Respir Physiol 58:377–393

    Article  CAS  PubMed  Google Scholar 

  25. Kilburn KH, Asmundsson T, Britt RC, Cardon R (1969) Effects of breathing 10 per cent carbon dioxide on the pulmonary circulation of human subjects. Circulation 39:639–653

    Article  CAS  PubMed  Google Scholar 

  26. Lakshaminarayan S, Sahn SA, Petty TL (1973) Bicarbonate therapy in severe acute respiratory acidosis. Scand J Respir Dis 54:128–131

    CAS  PubMed  Google Scholar 

  27. Lawrence LM, Klein K, Miller-Graber P et al (1990) Effect of sodium bicarbonate on racing Standardbreds. J Anim Sci 68:673–677

    Article  CAS  PubMed  Google Scholar 

  28. Lele EE, Hantos Z, Bitay M et al (2011) Bronchoconstriction during alveolar hypocapnia and systemic hypercapnia in dogs with a cardiopulmonary by-pass. Respir Physiol Neurobiol 175:140–145

    Article  PubMed  Google Scholar 

  29. Light RW, Peng MJ, Stansbury DW et al (1999) Effects of sodium bicarbonate administration on the exercise tolerance of normal subjects breathing through dead space. Chest 115:102–108

    Article  CAS  PubMed  Google Scholar 

  30. Madias NE, Adrogué HJ, Cohen JJ (1980) Maladaptive renal response to secondary hypercapnia in chronic metabolic alkalosis. Am J Physiol 238:F283–F289

    CAS  PubMed  Google Scholar 

  31. Madias NE, Adrogué HJ, Cohen JJ, Schwartz WB (1979) Effect of natural variations in PaCO2 on plasma [HCO3-] in dogs: a redefinition of normal. Am J Physiol 236:F30–F35

    CAS  PubMed  Google Scholar 

  32. Mansmann HC Jr, Abboud EM, McGeady SJ (1997) Treatment of severe respiratory failure during status asthmaticus in children and adolescents using high flow oxygen and sodium bicarbonate. Ann Allergy Asthma Immunol 78:69–73

    Article  PubMed  Google Scholar 

  33. Menitove SM, Goldring RM (1983) Combined ventilator and bicarbonate strategy in the management of status asthmaticus. Am J Med 74:898–901

    Article  CAS  PubMed  Google Scholar 

  34. Mithoefer JC, Karetzky MS, Porter WF (1968) Effect of intravenous NaHCO3 on ventilation and gas exchange in normal man. Respir Physiol 4:132–140

    Article  CAS  PubMed  Google Scholar 

  35. Mithoefer JC, Porter WF, Karetzky MS (1968) Indications for the use of sodium bicarbonate in the treatment of intractable asthma. Respiration 25:201–215

    Article  CAS  PubMed  Google Scholar 

  36. Mithoefer JC, Runser RH, Karetzky MS (1965) The use of sodium bicarbonate in the treatment of acute bronchial asthma. N Engl J Med 272:1200–1203

    Article  CAS  PubMed  Google Scholar 

  37. Oppersma E, Doorduin J, van der Hoeven JG et al (2018) The effect of metabolic alkalosis on the ventilatory response in healthy subjects. Respir Physiol Neurobiol 249:47–53

    Article  CAS  PubMed  Google Scholar 

  38. Oren A, Wasserman K, Davis JA, Whipp BJ (1981) Effect of CO2 set point on ventilatory response to exercise. J Appl Physiol Respir Environ Exerc Physiol 51:185–189

    CAS  PubMed  Google Scholar 

  39. Pappenheimer JR, Fencl V, Heisey SR, Held D (1965) Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol 208:436–450

    Article  CAS  PubMed  Google Scholar 

  40. Reindl I, Wernecke KD, Opitz C et al (1998) Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am Heart J 136:778–785

    Article  CAS  PubMed  Google Scholar 

  41. Roncoroni AJ, Adrogué HJ, de Obrutsky CW et al (1976) Metabolic acidosis in status asthmaticus. Respiration 33:85–94

    Article  CAS  PubMed  Google Scholar 

  42. Schaeffer MR, Guenette JA, Jensen D (2021) Impact of ageing and pregnancy on the minute ventilation/carbon dioxide production response to exercise. Eur Respir Rev 30:200225

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schwartz WB, Brackett NC Jr, Cohen JJ (1965) The response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia: the physiologic limits of the defense of pH. J Clin Invest 44:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwartz WB, Silverman L (1965) A large environmental chamber for the study of hypercapnia and hypoxia. J Appl Physiol 20:767–774

    Article  CAS  PubMed  Google Scholar 

  45. Singer RB, Deering RC, Clark JK (1956) The acute effects in man of a rapid intravenous infusion of hypertonic sodium bicarbonate solution. II. Changes in respiration and output of carbon dioxide. J Clin Invest 35:245–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swenson ER (2019) The unappreciated role of carbon dioxide in ventilation/perfusion matching. Anesthesiology 131:226–228

    Article  PubMed  Google Scholar 

  47. Swenson ER, Robertson HT, Hlastala MP (1994) Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med 149:1563–1569

    Article  CAS  PubMed  Google Scholar 

  48. Vajner JE 3rd, Lung D (2013) Case files of the University of California San Francisco Medical Toxicology Fellowship: acute chlorine gas inhalation and the utility of nebulized sodium bicarbonate. J Med Toxicol 9:259–265

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Su F, Bruhn A et al (2008) Acute hypercapnia improves indices of tissue oxygenation more than dobutamine in septic shock. Am J Respir Crit Care Med 177:178–183

    Article  CAS  PubMed  Google Scholar 

  50. Wasserman K (1976) Testing regulation of ventilation with exercise. Chest 70:173–178

    Article  CAS  PubMed  Google Scholar 

  51. West JB (1971) Causes of carbon dioxide retention in lung disease. N Engl J Med 284:1232–1236

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

H.J.A and N.E.M. conceived and designed the study; performed the research and acquired the data; analyzed and interpreted the data; and performed the statistical analysis and prepared the tables and figures. H.J.A. and N.E.M. contributed to drafting and revising the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Nicolaos E. Madias.

Ethics declarations

Ethics approval

Animal experiments conformed to internationally accepted standards and had been approved by the institutional review body for animal research of Tufts-New England Medical Center.

Competing interest

The authors declare no competing interests.

Disclosure

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adrogué, H.J., Madias, N.E. Acute sodium bicarbonate administration improves ventilatory efficiency in experimental respiratory acidosis: clinical implications. Pflugers Arch - Eur J Physiol (2024). https://doi.org/10.1007/s00424-024-02949-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00424-024-02949-6

Keywords

Navigation