Skip to main content
Log in

Relation between action potential duration and mechanical activity on rat diaphragm fibers

Effects of 3,4-diaminopyridine and tetraethylammonium

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The aim of this work was to study the electrical and mechanical properties of small bundles of rat diaphragm muscle treated with two blockers of the delayed potassium rectification channels: 3,4-diaminopyridine (3,4-DAP, 2.5 mM) and tetraethylammonium (TEA, 20 mM). Twitch tension was significantly potentiated by TEA and 3,4-DAP (39% and 59% respectively). Maximal tetanic tension was not affected by both drugs. The voltage dependence of the tension vs the resting membrane potential was shifted to lower values in TEA and 3,4-DAP. 3,4-DAP increased the caffeine contracture tension (2.5–10 mM) and lowered the caffeine contracture threshold. The duration of the action potential (measured at the level of −40 mV) was increased by TEA and 3,4-DAP solutions. This change was a consequence of the decrease in the rat of repolarization of the action potential. In addition, TEA reduced the amplitude and the rate of rise of the action potential. We suggested that the increment in the duration of the action potential and the shift of the mechanical threshold to more negative values of membrane potential might be the factors involved in the twitch potentiation induced by the TEA and 3,4-DAP solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowman WC, Harvey AL, Marshall IG (1977) The actions of aminopyridines on avian muscle. Naunyn-Schmiedeberg's Arch Pharmacol 297:99–103

    Article  CAS  Google Scholar 

  • Caputo C (1983) Pharmacological investigations of excitation-contraction coupling. Section 10: Skeletal muscle. In: Peachey L, Adrian RA, Geiger SR (eds) Handbook of physiology, Section 10: Skeletal muscle. American Physiological Society, Bethesda, MD, USA, pp 381–414

    Google Scholar 

  • Delay M, Ribalet B, Vergara J (1986) Caffeine potentiation of calcium release in frog skeletal muscle fibres. J Physiol 375: 535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delbono O, Obejero Paz CA, Muchnik S (1985) Propiedades mecánicas del músculo esquelético en presencia de altas concentrationes de potasio y rubidio. Medicina (B. Aires) 45:327

    Google Scholar 

  • Dulhunty AF (1980) Potassium contractures and mechanical activation in mammalian skeletal muscles. J Membr Biol 57:223–233

    Article  CAS  PubMed  Google Scholar 

  • Durant NN, Marshall IG (1980) The effects of 3,4-diaminopyridine on acetylcholine release at the frog neuromuscular junction. Eur J Pharmacol 67:201–208

    Article  CAS  PubMed  Google Scholar 

  • Edman KAP, Kiessling A (1971) The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibers of the frog. Acta Physiol Scand 81:182

    Article  CAS  PubMed  Google Scholar 

  • Edman KAP, Grieve DW, Nilsson E (1966) Studies of the excitation-contraction mechanism in the skeletal muscle and the myocardium. Pflügers Arch 290:320–334

    Article  CAS  Google Scholar 

  • Gillespie JI, Hutter OF (1975) The actions of 4-aminopyridine on the delayed potassium current in skeletal muscle fibres. J Physiol 252:70P

  • Hagiwara S, Watanabe A (1955) The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular microelectrode. J Physiol 129:513–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AL, Marshall IG (1977) The facilitatory actions of aminopyridines and tetraethylammonium on neuromuscular transmission and muscle contractility in avian muscle. Naunyn-Schmiedeberg's Arch Pharmacol 299:53–60

    Article  CAS  Google Scholar 

  • Hille B (1967) The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J Gen Physiol 50:1287–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibres. J Physiol 153:386–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CLH (1986) The differential effects of twitch potentiators on charge movements in frog skeletal muscle. J Physiol 380:17–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao CY, Stanfield PR (1970) Actions of some cations on the electrical properties and mechanical threshold of frog sartorius muscle fibers. J Gen Physiol 55:620–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Edman KAP (1979) Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle. Acta Physiol Scand 105:443–452

    Article  CAS  PubMed  Google Scholar 

  • Khan RA, Lemeignan M (1983) Effects of 3,4-diaminopyridine on mechanical and electrical responses of frog single muscle fibres. Acta Pharmacol Toxicol 52:181–187

    Article  CAS  Google Scholar 

  • Kirsch GE, Narahashi T (1978) 3,4-Diaminopyridine. A potent new potassium channel blocker. Biophys J 22:507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi M, Kurihara S, Sakai T (1985) Change in intracellular calcium ion concentration induced by caffeine and rapid cooling in frog skeletal muscle fibres. J Physiol 365:131–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotsias BA, Muchnik S (1978) Reversible effect of dantrolene sodium on twitch tension of rat skeletal muscle. Arch Neurol 35:234–236

    Article  CAS  PubMed  Google Scholar 

  • Kotsias BA, Muchnik S, Obejero Paz CA (1986). Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles. Am J Physiol 250:C40-C46

    CAS  PubMed  Google Scholar 

  • Lorković H (1971) Membrane potential and mechanical tension in white and red muscles of the rat. Am J Physiol 221:1044–1050

    PubMed  Google Scholar 

  • Lüttgau HC; Kovacs L, Gottschalk G, Fuxreiter M (1983) How perchlorate improves excitation-contraction coupling in skeletal muscle fibres. Biophys J 43:247–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashima H, Matsumura M (1962) Roles of external ions in the excitation-contraction coupling of frog skeletal muscle. Jpn J Physiol 12:639–653

    Article  CAS  PubMed  Google Scholar 

  • Molgó J (1978) Voltage clamp analysis of the sodium and potassium currents in skeletal muscle fibres treated with 4-aminopyridine. Experientia 34:1275–1276

    Article  PubMed  Google Scholar 

  • Molgó J, Lundh H, Thesleff S (1980) Potency of 3,4-diaminopyridine and 4-aminopyridine on mammalian neuromuscular transmission and the effects of pH changes. Eur J Pharmacol 61:25–34

    Article  PubMed  Google Scholar 

  • Miledi R, Parker I, Zhu PH (1984) Extracellular ions and excitation-contraction coupling in frog twitch muscle fibres. J Physiol 351:687–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan KG, Bryant SH (1977) The mechanism of action of dantrolene sodium. J Pharmacol Exp Ther 201:138–147

    CAS  PubMed  Google Scholar 

  • Narahashi T (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev 54:813–889

    CAS  PubMed  Google Scholar 

  • Savage AO (1984) Contractile effects of 4-aminopyridine on isolated frog rectus abdominis muscles. Can J Physiol Pharmacol 62:1525–1529

    Article  CAS  PubMed  Google Scholar 

  • Schauf CL (1983) Tetramethylammonium ions alter sodium-channel gating in Myxicola. Biophys J 41:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal SS, Faulkner JA (1985) Temperature-dependent physiological stability of rat skeletal muscle in vitro. Am J Physiol 248:C265-C270

    CAS  PubMed  Google Scholar 

  • Stanfield PR (1970) The differential effects of tetraethylammonium and zinc on the resting conductance of frog skeletal muscle. J Physiol 209:231–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani E, Chiarandini DJ (1982) Ionic channels in skeletal muscle. Ann Rev Physiol 44:357–372

    Article  CAS  Google Scholar 

  • Su JY, Hasselbach W (1984) Caffeine-induced calcium release from isolated sarcoplasmic reticulum of rabbit skeletal muscle. Pflügers Arch 400:14–21

    Article  CAS  PubMed  Google Scholar 

  • Taylor SR, Preiser H, Sandow A (1972) Action potential parameters affecting excitation-concentration coupling. J Gen Physiol 59:421–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt IR, Stephenson DG (1983) Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pflügers Arch 398:210–216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delbono, O., Kotsias, B.A. Relation between action potential duration and mechanical activity on rat diaphragm fibers. Pflugers Arch. 410, 394–400 (1987). https://doi.org/10.1007/BF00586516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586516

Key words

Navigation