Skip to main content
Log in

New design of a radio-frequency plasma torch

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A numerical model has been developed for predicting the two-dimensional flow and temperature fields in a radio-frequency (rf) plasma torch. The method employed here is based on Boulos' model with the exception of the boundary conditions for the electric and magnetic field equations. Calculations have been made for the confirmation of a new sample injection method, which is capable of completely evaporating refractory materials at high feeding rates without interfering with the stability of the plasma. In the newly designed torch, the reagent is radially injected into the hottest part of the plasma through quartz capillary tubes set symmetrically between an inductor coil. Experimental investigations have also been performed for verifying the proper function of the design. These results provide evidence that our radial injection method developed here is more effective in practical processing than the conventional axial injection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mahé,Les Hautes Températures et leurs Utilizations en Physique et en Chimie, Vol. 1, G. Chaudron and F. Trombe, eds., Masson and Cie, Paris (1973), p. 139.

    Google Scholar 

  2. G. Thursfield and G. J. Davies,Trans. Inst. Chem. Eng. 52, 237 (1974).

    Google Scholar 

  3. H. U. Eckert,High Temp. Sci. 6, 99 (1974).

    Google Scholar 

  4. B. W. Walsh and A. D. Stokes,Chem. Eng. Sci. 27, 511 (1972).

    Google Scholar 

  5. M. I. Boulos,IEEE Trans. Plasma Sci. PS-4, 128 (1976).

    Google Scholar 

  6. J. D. Chase,J. Appl. Phys. 40, 318 (1969).

    Google Scholar 

  7. J. D. Chase,J. Appl. Phys. 42, 4870 (1971).

    Google Scholar 

  8. T. B. Reed,J. Appl. Phys. 32, 2534 (1961).

    Google Scholar 

  9. A. D. Gosman, W. H. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfstein,Heat and Mass Transfer in Recirculating Flows, Academic Press, New York (1969).

    Google Scholar 

  10. E. L. Wachspress,Mathematical Methods for Digital Computers, Vol. 1, A. Ralston and H. S. Wilf, eds., Wiley, New York (1960).

    Google Scholar 

  11. H. U. Eckert,J. Appl. Phys. 42, 3108 (1971).

    Google Scholar 

  12. H. U. Eckert,J. Appl. Phys. 43, 2707 (1972).

    Google Scholar 

  13. H. U. Eckert,J. Appl. Phys. 41, 3633 (1970).

    Google Scholar 

  14. R. C. Miller and R. J. Ayen,J. Appl. Phys. 40, 5260 (1969).

    Google Scholar 

  15. T. Yoshida and K. Akashi,J. Appl. Phys. 48, 2252 (1977).

    Google Scholar 

  16. J. Canteloup and A. Mocellin,Special Ceramics 6, P. Popper, ed., B. Ceram, R.A., Stoke-on-Trent (1975), p. 209.

  17. M. I. Boulos, R. Gagne, and R. M. Barnes,Can. J. Chem. Eng. 58, 367 (1980).

    Google Scholar 

  18. R. Giovanelli,J. Appl. Phys. 41, 3194 (1970).

    Google Scholar 

  19. T. B. Reed and J. T. Roddy,Rev. Sci. Instrum. 36, 620 (1965).

    Google Scholar 

  20. T. Yoshida, A. Kawasaki, K. Nakagawa, and K. Akashi,J. Mater. Sci. 14, 1624 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, T., Nakagawa, K., Harada, T. et al. New design of a radio-frequency plasma torch. Plasma Chem Plasma Process 1, 113–129 (1981). https://doi.org/10.1007/BF00566379

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566379

Key words

Navigation