Skip to main content

RF Inductively Coupled Plasma Torches

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Thermal Plasmas

Abstract

The basic concept of the inductively coupled radio frequency (RF) plasma has been known since the middle of the twentieth century. The technology attracted increasing attention for a wide range of applications varying from small-scale systems for elemental analysis, to large power installations for the testing of materials for the aerospace industry. Induction plasmas have also been widely used in the fiber optics industry, and more recently for the synthesis and processing of advanced materials including nano- and micron-sized high-purity spherical powders. In this chapter, the basic concepts used for the generation of inductively coupled RF plasmas are presented. These are followed by a detailed discussion of the energy coupling mechanism and induction plasma torch design. The results of a wide range of diagnostic and modeling studies are reviewed providing a description of the main features of the electromagnetic, temperature, flow, and concentration fields in the discharge.

E. Pfender: deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Alternating current

DC:

Direct current

i.d.:

Internal diameter

ICP:

Inductively coupled plasma

ITSC:

Internal Thermal Spray Conference

ISPC:

International Symposium on Plasma Chemistry

MS:

Mass spectrometry

o.d.:

Outside diameter

OES:

Optical emission spectroscopy

RC:

Radiation cooled

RF:

Radio frequency

slm:

Standard liters per minute

vs:

Versus

WC:

Water cooled

References

  • Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Elec Eng 94:27–37

    Google Scholar 

  • Boulos MI (1985) The inductively coupled r.f. plasma. Pure Appl Chem 57:1321–1352

    Article  Google Scholar 

  • Boulos MI (1992a) R.F. Induction plasma spraying, state-of-the-art review. J Therm Spray Technol 1:33–40

    Article  Google Scholar 

  • Boulos MI (1992b) Radio-frequency plasma developments, scale-up and industrial applications. J High Temp Chem Proc 1:401–411

    Google Scholar 

  • Boulos MI (1997) The inductively coupled radio frequency plasma. High Temp Mater Process 1:17–39

    Article  Google Scholar 

  • Boulos MI (2001) Visualization and diagnostics of thermal plasma flows. J Vis 4:19–28

    Article  Google Scholar 

  • Boulos MI, Jurewicz J (1992) High performance induction plasma torch with a water-cooled ceramic confinement tube. Canadian Patent 2,085,133, 10 Apr

    Google Scholar 

  • Boulos MI, Jurewicz J (1993) High performance induction plasma torch with a water-cooled ceramic confinement tube. US Patent 5,200,595, 6 Apr

    Google Scholar 

  • Boulos MI, Jurewicz J (1996a) US Patent, 5,560,844, 1 Oct

    Google Scholar 

  • Boulos MI, Jurewicz J (1996b) Chinese Patent, ZL92103380.X, 11 Apr

    Google Scholar 

  • Boulos MI, Jurewicz J (1997) European Patent, 533884, 2 Jan

    Google Scholar 

  • Boulos MI, Jurewicz J (1999) Korean Patent, 203,994, 25 Mar

    Google Scholar 

  • Boulos MI, Jurewicz J (2001) Japanese Patent, 3,169,962, 16 Mar

    Google Scholar 

  • Boulos MI, Jurewicz J (2004) Multi-coil induction plasma torch for solid-state power supply. US Patent 6,693,253, 17 Feb

    Google Scholar 

  • Boulos MI, Jurewicz J (2005) Multi-coil induction plasma torch for solid-state power supply. US Patent 6,919,527, 19 July

    Google Scholar 

  • Bauman PWJM (1987) Inductively coupled plasma emission spectroscopy. J. Wiley, NY

    Google Scholar 

  • Chase JD (1969) Magnetic pinch effect in the thermal r.f. induction plasma. J Appl Phys 40:318–325

    Article  Google Scholar 

  • Chase JD (1971) Theoretical and experimental investigation of pressure and flow in induction plasmas. J Appl Phys 42:4870–4879

    Article  Google Scholar 

  • Davies J, Simpson P (1979) Induction heating handbook. McGraw Hill, NY

    Google Scholar 

  • Douglas TS (1974) Radial temperature profiles in an R.F. plasma over a wide range of applied magnetic flux intensities: theory and experiments. PhD thesis, Georgia Institute of Technology

    Google Scholar 

  • Dresvin SV (ed) (1977) Physics and technology of low temperature plasmas. Iowa State University Press, Iowa, USA

    Google Scholar 

  • Dresvin SV (ed) (1993) The fundamentals of theory and design of HF plasma generators (translated from Russian)

    Google Scholar 

  • Dundas PH (1970) Induction plasma heating, measurement of gas concentrations, temperatures and stagnation heads in a binary plasma system. NASA-CR 1527

    Google Scholar 

  • Dundas PH, Thorpe M (1969) Economics and technology of chemical processing with electric-field plasmas. Chemical Engineering, 30 June, pp 123–127

    Google Scholar 

  • Dundas PH, Pool JW, Vogel CE (1975) Low frequency induction plasma system. US Patent, 3,862,393, 21 Jan

    Google Scholar 

  • Eckert HU (1971) Measurement of the r.f. magnetic field distribution in a thermal induction plasma. J Appl Phys 42:3108–3113

    Article  Google Scholar 

  • Eckert HU (1972) Dual magnetic probe system for phase measurements in thermal induction plasmas. J Appl Phys 43:2707–2713

    Article  Google Scholar 

  • Eckert HU (1974) The induction arc: a state-of-the-art review. High Temp 6:99–134

    Google Scholar 

  • Fouladgar J, Chentouf A, Develey G (1993) The calculation of the impedance of an induction plasma installation by a hybrid finite-element boundary-element method. IEEE Trans Magn 29:2479–2481

    Article  Google Scholar 

  • Freeman MP, Chase JD (1968) Energy-transfer mechanism and typical operating characteristics for the thermal RF plasma generator. J Appl Phys 39:180–190

    Article  Google Scholar 

  • Galtier F, Collongues R, Reboux J (1973) Les fours à plasma haute fréquence. Chaudron and trombe Eds., Les Hautes Températures, Masson et CI, 82–121

    Google Scholar 

  • Hollabaugh CM, Hull DE, Newkirk LR, Petrovic JJ (1983) R.R. Plasma system for the production of ultrafine, ultrapure silicon carbide powder. J Mater Sci 18:3190–3194

    Article  Google Scholar 

  • Hollenstein M, Rahman M, Boulos MI (1999) Aerodynamic study of the supersonic induction plasma jet, ISPC-14, Czech Republic, 2–6 Aug

    Google Scholar 

  • Kameyama T, Fukuda K (1986) Development of an all solid-state RF-RF thermal plasma. Bimonthly report published by National Chemical Laboratory for Industry, Tsukuba, 21(4) (in Japanese)

    Google Scholar 

  • Kameyama T, Sakanaka K, Motoe A, Tsunoda T, Nakanaga T, Wakayama NI, Takeo H, Fukuda K (1990) Highly efficient and stable radio-frequency thermal plasma system for the production of ultrafine and ultrapure B-SiC powder. J Mater Sci 25(2A):1058–1065

    Google Scholar 

  • Klubnikin VS (1975) Thermal and gas dynamic characteristics of an argon induction discharge. High Temp 13:439–446

    Google Scholar 

  • Léveillé V (2002) Diagnostic du jet de plasma hf supersonique, Université de Sherbrooke. MScA thesis

    Google Scholar 

  • Léveillé V, Gravelle DV, Boulos MI (2003) Diagnostic study of supersonic plasma flows using enthalpy probe, Schlieren and high speed photography. In: International thermal spray conference (ITSC-2003), Orlando

    Google Scholar 

  • Mensingen AE, Boedecker LR (1968) Theoretical investigations on rf induction heated plasmas. NASA CR-1312, 1–75

    Google Scholar 

  • Pool JW, Vogel CE (1972) Induction torches and low frequency tests. NASA CR-2053

    Google Scholar 

  • Pool JW, Freeman MP, Doak KW, Thorpe ML (1973) Simulator tests to study hot-flow problems related to a gas core reactor. NASA CR-2309

    Google Scholar 

  • Rahmane M, Soucy G, Boulos MI (1994) Mass transfer in induction plasma reactors. Int J Heat Mass Transf 37:2035–2046

    Article  Google Scholar 

  • Rahmane M, Soucy G, Boulos MI (1996) Diffusion phenomena of a cold gas in thermal plasma stream. Plasma Chem Plasma Process 16:169S–189S

    Article  Google Scholar 

  • Reboux, J (1971), L’utilisation du fours à plasma inductif dans le traitement et la préparation des matériaux réfractaires. A.I.M. Liège, 30 mars.

    Google Scholar 

  • Reed TB (1961a) Induction coupled plasma torch. J Appl Phys 32:821–824

    Article  Google Scholar 

  • Reed TB (1961b) Growth of refractory crystals using the induction plasma torch. J Appl Phys 32:2534–2536

    Article  Google Scholar 

  • Reed TB (1963a) Heat transfer intensity from induction plasma flames and oxy-hydrogen flames. J Appl Phys 34:2266–2269

    Article  Google Scholar 

  • Reed TB (1963b) High-power low-density induction plasma. J Appl Phys 34:3146–3147

    Article  Google Scholar 

  • Soucy G, Jurewicz J, Boulos MI (1994a) Mixing study of the induction plasma reactor: part I – axial injection mode. Plasma Chem Plasma Process 14:43–57

    Article  Google Scholar 

  • Soucy G, Jurewicz J, Boulos MI (1994b) Mixing study of the induction plasma reactor: part II – radial injection mode. Plasma Chem Plasma Process 14:59–71

    Article  Google Scholar 

  • TAFA (1966) Operating limits model 56. Engineering Data Bulletin 52 E3

    Google Scholar 

  • TAFA (1968) Induction plasma heat source 200–1000kW. Bulletin P6 4/68

    Google Scholar 

  • Thorpe ML (1966) High temperature heat with induction plasma. R&D Magazine, Jan. Thompson Publications

    Google Scholar 

  • Thorpe ML (1968) Induction plasma heating: system performance, hydrogen operation and gas core reactor simulation development. TAFA internal report

    Google Scholar 

  • Thorpe ML (1970a) Process push for plasma. Chemical Week, 17 June, pp 119–120

    Google Scholar 

  • Thorpe ML (1970b) Plasmas: the lab toy that grew up. Business Week, 12 Aug

    Google Scholar 

  • Thorpe ML, Harrington KW (1970a) Induction plasma generation having improved chamber structure and control. US Patent 3,530,334, 22 Sept

    Google Scholar 

  • Thorpe ML, Harrington KW (1970b) Induction plasma generation with high velocity sheath. US Patent 3,530,335, 22 Sept

    Google Scholar 

  • Thorpe ML, Scammon LW (1968) Induction plasma heating: high power, low frequency operation and pure hydrogen heating. NASA 3-9375, Cleveland

    Google Scholar 

  • Thorpe ML, Scammon LW (1969) Induction plasma heating: high power, low frequency operation and pure hydrogen heating. NASA CR-1343, Cleveland

    Google Scholar 

  • Thorpe ML, Suncook NH (1970) Induction plasma generation having with gas sheath forming chamber. US Patent 3,546,522, 8 Dec

    Google Scholar 

  • Thorpe ML, Harrington KW, Suncook NH (1968) Induction plasma generator including cooling means, gas flow means and operating means therefor. US Patent 3,401,302, 10 Sept

    Google Scholar 

  • Uesugi T, Nakamura O, Yoshidav, Akashi K (1988) A tandem radio-frequency plasma torch. J Appl Phys 64:3874–3879

    Google Scholar 

  • Vogel CE (1970) Experimental plasma studies simulating a gas-core nuclear rocket. AIAA, San Diego, Paper #70-691

    Google Scholar 

  • Vogel CE (1971) Curved permeable wall induction torch tests. NASA CR-1764

    Google Scholar 

  • Yoshida T, Nakagawa K, Harada T, Akashi K (1981) New design of a radio frequency plasma torch. Plasma Chem Plasma Process 1:113–129

    Article  Google Scholar 

  • Yoshida T, Tawi T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646

    Article  Google Scholar 

  • Zinn S, Semiatin SL (1988) Elements of induction heating. EPRI, Palo Alto California, and ASM International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Alphabet

\( \overrightarrow{\textrm{B}} \)

Magnetic field vector

Bz

Magnetic flux intensity in the axial direction

c

Speed of light in space (c = 299,792,458 m/s)

cp

Specific heat (J/K.kg)

\( \overrightarrow{\textrm{E}} \)

Electric field vector (V/m)

f

Oscillator frequency (Hz)

Ic

Coil current (A)

Ig

Grid current (A)

Ip

Plate current (A)

j

Current density (A/m2)

jϑ

Azimuthal current density (A/m2)

Characteristic dimension of the discharge space

mi

Cooling water flow rate (kg/s)

pa

Chamber pressure (kPa)

Pac

Reactive power in the oscillator circuit (kW)

P

Local energy generation through ohmic heating \( \left(\textrm{P}=\upsigma\ {\left|\textrm{E}\right|}^2\right) \) (W/m3)

Pc

Total power recovered in torch cooling water circuit, Eq. 4 (kW)

Pi

Power recovered in cooling water stream i (kW)

pmo

Magnetically induced pressure (Pa)

Pgen,

Power recovered in power supply cooling water (kW)

P0

Power coupled into the discharge (kW)

Ptor

Power recovered in torch cooling water (kW)

Ppb

Power recovered in probe cooling water (kW)

Ppt

Plate power (kW)

Preac.

Power recovered in reactor cooling water (kW)

Pw

Total power recovered in system cooling water circuit, Eq. 5 (kW)

Qce

Central gas flow rate (slm)

Qin

Injected gas flow rate (slm)

Qpb

Probe gas flow rate (slm)

Qsh

Sheath gas flow rate (slm)

r

Distance in the radial direction (mm)

rc

Internal radius of the induction coil (m)

rn

Radius of discharge (m)

ro

Internal radius of the plasma-confining tube (m)

Tin

Inlet temperature of cooling water (°C)

Tout

Exit temperature of cooling (°C)

vz

Axial velocity component (m/s)

Vp

Plate voltage (kV)

y

Molar fraction

z

Distance in the axial direction (mm)

δt

Thickness of skin depth (m)

ϕE

Phase angle of electric field

ϕH

Phase angle of magnetic field

ηc

Energy coupling efficiency, Eq. 6

ηo

Overall energy coupling efficiency, Eq. 7

κc

Coupling parameter, \( \left[{\upkappa}_{\textrm{c}}=\sqrt{2}\ \left(\frac{{\textrm{r}}_{\textrm{n}}}{\updelta_{\textrm{t}}}\right)\right] \)

λ

Wave length (m)

μ0

Magnetic permeability of vacuum (μo = 4π × 10−7) (H/m)

ρ

Mass density (kg/m3)

σo

Electrical conductivity (mho/m) or (A/V. m)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P., Pfender, E. (2023). RF Inductively Coupled Plasma Torches. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_17-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_17-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12183-3

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    RF Inductively Coupled Plasma Torches
    Published:
    09 November 2022

    DOI: https://doi.org/10.1007/978-3-319-12183-3_17-2

  2. Original

    Inductively Coupled Radio Frequency Plasma Torches
    Published:
    16 June 2016

    DOI: https://doi.org/10.1007/978-3-319-12183-3_17-1