Skip to main content
Log in

Time course of phenobarbital and cimetidine mediated changes in hepatic drug metabolism

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Four healthy subjects were investigated weekly for 14 weeks by the antipyrine one sample saliva test, the 48-h urinary excretion of major antipyrine metabolites and the 2-h aminopyrine breath test before, during and after stimulation and inhibition of drug metabolism with phenobarbital and cimetidine, respectively. The phenobarbital-induced enhancement of antipyrine clearance (1.33–2.03 times) and of the aminopyrine breath test (0.94–1.19 times) occurred one week after beginning drug administration and persisted for 10 days after its cessation. The cimetidine-related inhibition of antipyrine clearance (0.62–0.85 times) and of the aminopyrine breath test (0.52–0.93 times) was observed 24 h after beginning cimetidine administration and subsided within two days after the last dose. During enhancement and inhibition the clearance of antipyrine to 3-hydroxymethyl-, 4-hydroxy- and norantipyrine varied as the total antipyrine clearance. The intraindividual variation in antipyrine clearance was 6–8%, and the corresponding variation in urinary excretion of antipyrine metabolites was 10–20%. It is concluded that the influence of phenobarbital and cimetidine on hepatic microsomal enzyme activity can be monitored simply by measurement of the blood concentration of the drug. Whether this simple relationship applies to other microsomally mediated drug interactions requires further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvares AP, Kappas A, Eiseman JL, Anderson KE, Pantuck CB, Pantuck EJ, Hsiao K-C, Garland WA, Conney AH (1978) Intraindividual variation in drug disposition. Clin Pharmacol Ther 26: 407–19

    Google Scholar 

  2. Ballinger B, Browning M, O'Malley K, Stevenson IH (1972) Drug metabolizing capacity in states of drug dependence and withdrawal. Br J Pharmacol 45: 638–43

    PubMed  CAS  Google Scholar 

  3. Bax NDS, Lennard MS, Tucker GT (1981) Inhibition of antipyrine metabolism by β-adrenoceptor antagonists. Br J Clin Pharmacol 12: 779–84

    PubMed  CAS  Google Scholar 

  4. Breen KJ, Bury R, Desmond PV, Mashford ML, Morphett, Westwood B, Shaw RG (1982) Effects of cimetidine and ranitidine on hepatic drug metabolism. Clin Pharmacol Ther 31: 297–300

    Article  PubMed  CAS  Google Scholar 

  5. Breimer DD, Zilly W, Richter E (1977) Influence of rifampicin on drug metabolism: Differences between hexobarbital and antipyrine. Br J Clin Pharmacol 21: 470–81

    CAS  Google Scholar 

  6. Brodie MJ, Boobis AR, Dollery CT, Hillyard CJ, Brown DJ, Macintyhe I, Park BK (1980) Rifampicin and vitamin D metabolism. Clin Pharmacol Ther 27: 810–14

    Article  PubMed  CAS  Google Scholar 

  7. Conney AH (1969) Drug metabolism and theapeutics. N Engl J Med 280: 653–60

    Article  PubMed  CAS  Google Scholar 

  8. Conney AH, Pantuck EJ, Kuntzman R, Kappas A, Anderson KE, Alvares AP (1977) Nutrition and chemical biotransformations in man. Clin Pharmacol Ther 22: 706–20

    Google Scholar 

  9. Danhof M, Breimer DD (1979) Studies on the different metabolic pathways of antipyrine in man I. Oral administration of 250, 500, and 1000 mg to healthy volunteers. Br J Clin Pharmacol 8: 529–37

    PubMed  CAS  Google Scholar 

  10. Danhof M, Verbeek RMA, Van Boxtel CJ, Boeijinga JK, Breimer DD (1982) Differential effects of enzyme induction on antipyrien metabolite formation. Br J Clin Pharmacol 13: 379–86

    PubMed  CAS  Google Scholar 

  11. Døssing M, Poulsen HE, Andreasen PB, Tygstrup N (1982) A simple method for determination of antipyrine clearance. Clin Pharmacol Ther 32: 392–396

    Article  PubMed  Google Scholar 

  12. Farrell GC, Cooksley WGE, Powell LW (1979) Enhancement of hepatic drug metabolism by glutethimide in patients with liver disease. Eur J Clin Pharmacol 16: 113–17

    Article  PubMed  CAS  Google Scholar 

  13. Forrest JAH, Roscoe P, Prescott LF, Stevenson IH (1974) Abnormal drug metabolism after barbiturate and paracetamol overdose. Br Med J 4: 499–502

    PubMed  CAS  Google Scholar 

  14. Henry DA, Macdonald IA, Kitchingman G, Bell GD, Langman MJS (1980) Cimetidine and ranitidine: Comparison of effects on hepatic drug metabolism. Br Med J 281: 775–77

    Article  PubMed  CAS  Google Scholar 

  15. Henry DA, Sharpe G, Chaplain S, Cartwright S, Kitchingman G, Bell GD, Langman MJS (1979) The 14C-aminopyrine breath test. A comparison of different forms of analysis. Br J Clin Pharmacol 8: 539–45

    PubMed  CAS  Google Scholar 

  16. Hepner GW, Vesell ES, Lipton A, Harvey HA, Wilkinson GR, Schenker S (1977) Disposition of aminopyrine, antipyrine, diazepam and indocyanine green in patients with liver disease or on anticonvulsant drug therapy: Diazepam breath test and correlations in drug elimination. J Lab Clin Med 90: 440–56

    PubMed  CAS  Google Scholar 

  17. Hepner GW, Vesell ES (1974) Assessment of aminopyrine metabolism in man by breath analysis after oral administration of 14C-aminopyrine. N Engl J Med 291: 1384–88

    Article  PubMed  CAS  Google Scholar 

  18. Jeffrey WH, Ahlin TA, Coren C, Hardy WR (1976) Loss of warfarin effect after occupational insecticide exposure. J Am Med Assoc 236: 2881–82

    Article  Google Scholar 

  19. Kampffmeyer HG (1971) Elimination of phenacetin and phenazone by man before and after treatment with phenobarbital. Eur J Clin Pharmacol 3: 113–18

    Article  CAS  Google Scholar 

  20. Lai AA, Levy RH, Cutler RE (1978) Time-course of interaction between carbamazepine and clonazepam in normal man. Clin Pharmacol Ther 24: 316–23

    PubMed  CAS  Google Scholar 

  21. Larsen NE, Hesselfeldt P, Rune SJ, Hvidberg EF (1979) Cimetidine assay in human plasma by liquid chromatography. J Chromatogr 163: 57–63

    PubMed  CAS  Google Scholar 

  22. Lewis KO, Nicholson G, Lange P, Paton A (1977) Aminopyrine breath test in alcoholic liver disease and in patients on enzyme-inducing drugs. J Clin Pathol 30: 1040–43

    PubMed  CAS  Google Scholar 

  23. Neuvonen PJ, Tokola RA, Kaste M (1981) Cimetidine-phenytoin interaction: Effect on serum phenytoin concentration and antipyrine test. Eur J Clin Pharmacol 21: 215–20

    Article  PubMed  CAS  Google Scholar 

  24. Ohnhaus EE, Park BK (1979) Measurement of urinary 6β hydroxycortisol excretion as an in vivo parameter in clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur J Clin Pharmacol 15: 139–45

    Article  PubMed  CAS  Google Scholar 

  25. Pantuck EJ, Pantuck CB, Garland BAWA, Min BH, Wattenberg LW, Anderson KE, Kappas A, Conney AH (1979) Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 25: 88–95

    PubMed  CAS  Google Scholar 

  26. Piken E, Hepner GW (1979) Decreased hepatic microsomal reserve in patients with cirrhosis. J Lab Clin Med 94: 947–54

    PubMed  CAS  Google Scholar 

  27. Prescott LF (1976) Clinical important drug interactions. In: Avery GS (ed) Drug treatment. Adis Press, Sidney

    Google Scholar 

  28. Prescott LF, Adhpon-Yamauh KK, Roberts E (1973) Rapid gas-liquid chromatographic estimation of antipyrine in plasma. J Pharm Pharmacol 25: 205–07

    PubMed  CAS  Google Scholar 

  29. Puurunen J, Sotaniemi E, Pelkonen O (1980) Effect of cimetidine on microsomal drug metabolism in man. Eur J Clin Pharmacol 18: 185–87

    Article  PubMed  CAS  Google Scholar 

  30. Roberts CJC, Jackson L, Halliwell M, Branch RA (1971) The relationship between liver volume, antipyrine clearance and indocyanine green clearance before and after phenobarbitone administration in man. Br J Clin Pharmacol 3: 907–13

    Google Scholar 

  31. Robinson DS, McDonald MG (1966) The effect of phenobarbital administration on the control of coagulation achieved during wafarin therapy in man. J Pharmacol Exp Ther 153: 250–54

    CAS  Google Scholar 

  32. Roots I, Saalfrank K, Hildebrandt AG (1972) Comparison of methods to study enzyme induction in man. In: Cooper DY, Rosenthal O, Snyder R, Witmer C (eds) Cytochromes P-450 and b5 structure, function, and interaction. Plenum Press, New York London

    Google Scholar 

  33. Rosalki SA, Rau D (1972) Serum gamma-glutamyl-transpeptidase activity in alcoholism. Clin Chem Acta 39: 41–47

    Article  CAS  Google Scholar 

  34. Rowland M, Matin SB, Thiessen J, Karam J (1974) Kinetics of tolbutamide interactions. In: Merselli PL, Garattine S, Cohen SH (eds) Drug interactions. Raven Press, New York

    Google Scholar 

  35. Rubenstein KE, Schneider RS, Ullman EF (1972) ‘Homogenous’ enzyme immunoassay. A new immunochemical technique. Biochem Biophys Res Commun 47: 846–51

    Article  PubMed  CAS  Google Scholar 

  36. Serlin MJ, Sibeon RG, Mossman S, Beckenridge AM, Williams JRB, Atwood JL, Willoughby JMT (1979) Cimetidine: Interaction with oral anticoagulants in man. Lancet 2: 317–19

    Article  PubMed  CAS  Google Scholar 

  37. Staiger C, Männer C, Czygan P, Walter E, de Vries J, Weber E (1981) The influence of cimetidine on antipyrine pharmacokinetics in patients with and without cirrhosis of liver. Clin Pharmacol Ther Toxicol 19: 561–64

    Google Scholar 

  38. Testa B, Jenner P (1981) Inhibitors of cytochrome P-450s and their mechanism of action. Drug Metab Rev 12: 1–117

    PubMed  CAS  Google Scholar 

  39. Toverud EI, Boobis AR, Brodie MJ, Murray S, Bennett PN, Whitmarsh V, Davies DS (1981) Differential induction of antipyrine metabolism by rifampicin. Eur J Clin Pharmacol 21: 155–60

    Article  PubMed  CAS  Google Scholar 

  40. Vesell ES (1979) The antipyrine test in clinical pharmacology: Conceptions and misconceptions. Clin Pharmacol Ther 26: 275–86

    PubMed  CAS  Google Scholar 

  41. Vesell ES, Page JG (1969) Genetic control of the phenobarbital-induced shortening of plasma antipyrine half-liver in man. J Clin Invest 48: 2202–09

    Article  PubMed  CAS  Google Scholar 

  42. Vesell ES, Passananti GT, Hepner GW (1976) Interaction between antipyrine and aminopyrine. Clin Pharmacol Ther 30: 661–69

    Google Scholar 

  43. Vesell ES, Passananti GT, Lee CH (1971) Impairment of drug metabolism by disulfiram in man. Clin Pharmacol Ther 12: 785–92

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Døssing, M., Pilsgaard, H., Rasmussen, B. et al. Time course of phenobarbital and cimetidine mediated changes in hepatic drug metabolism. Eur J Clin Pharmacol 25, 215–222 (1983). https://doi.org/10.1007/BF00543794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00543794

Key words

Navigation