Skip to main content
Log in

Transient cavity growth in ceramics under compression

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The transient cavity growth behaviour of liquid phase-sintered ceramics subject to compressive loads is examined. Three possible sources of transient behaviour are suggested, and their ranges of applicability evaluated. By considering the values of the characteristic time for individual transient modes, it has been determined that transient cavity growth in ceramics probably originates from transient grain-boundary sliding. Assuming that the creep-induced cavities nucleate and grow on grain boundaries that are parallel to the loading axis, a transient cavity growth model is developed on the basis that the local stress which drives cavity growth is induced by transient sliding of adjacent grain boundaries. Results of the proposed model are compared with small-angle neutron scattering measurements of a hot-pressed silicon carbide and a liquid phase-sintered alumina, both of which contain a continuous, amorphous grain-boundary phase. The different cavity growth behaviours observed in these ceramics are discussed in conjunction with transient grain-boundary sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Page and J. Lankford, J. Amer. Ceram. Soc.66 (1983) C-146.

    Article  Google Scholar 

  2. R. A. Page, J. Lankford and S. Spooner, J. Mater. Sci.19 (1984) 3360.

    Article  CAS  Google Scholar 

  3. Idem, Acta Metall.32 (1984) 1275.

    Article  CAS  Google Scholar 

  4. J. Lankford, K. S. Chan and R. A. Page, in “Fracture Mechanics of Ceramics,” edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 327.

    Chapter  Google Scholar 

  5. R. A. Page, J. Lankford, K. S. Chan, K. Hard-Man-Rhyne and S. Spooner, J. Amer. Ceram. Soc.70 (1987) 137.

    Article  CAS  Google Scholar 

  6. K. S. Chan and R. A. Page, Metall. Trans. A18A (1987) 1843.

    Google Scholar 

  7. K. S. Chan, J. Lankford and R. A. Page, Acta Metall.32 (1984) 1908.

    Google Scholar 

  8. R. Raj, Metall. Trans. A6A (1975) 1499.

    Article  Google Scholar 

  9. K. S. Chan and R. A. Page, J. Mater. Sci.25 (1990) 4622.

    Article  CAS  Google Scholar 

  10. B. L. Vaandrager and G. M. Pharr, Acta Metall.37 (1989) 1057.

    Article  CAS  Google Scholar 

  11. J. R. Dryden, D. Kucerovsky, D. S. Wilkinson and D. F. Watt, Acta Metall.37 (1989) 2007.

    Article  CAS  Google Scholar 

  12. R. Raj and M. F. Ashby, Metall. Trans. A2 (1971) 1113.

    Article  Google Scholar 

  13. R. Raj and C. K. Chyung, Acta Metall.29 (1981) 159.

    Article  CAS  Google Scholar 

  14. S. M. Wiederhorn, B. J. Hockey, R. F. Krause, Jr. and K. Jakus, J. Mater. Sci.21 (1986) 810.

    Article  CAS  Google Scholar 

  15. E. H. Rutter, Trans. Roy. Soc. A283 (1976) 203.

    Article  Google Scholar 

  16. K. S. Chan, R. A. Page and J. Lankford, Acta Metall.34 (1986) 2361.

    Article  CAS  Google Scholar 

  17. H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps” (Pergamon, New York, 1982) p. 98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Page, R.A. Transient cavity growth in ceramics under compression. J Mater Sci 27, 1651–1658 (1992). https://doi.org/10.1007/BF00542929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542929

Keywords

Navigation