Skip to main content
Log in

Measurement of transport properties of high-temperature fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

High-temperature fluids often show interesting behavior and have important industrial applications, however, their thermophysical properties are extremely difficult to measure. Sometimes there are no measuring methods available, despite the fact that the great industrial demand for data on these property data at high temperatures is intense in recent years. In the present paper, five examples of approaches to measure transport properties of high temperature fluids are described. They include measurements of the viscosity of high-temperature melts by the oscillating-cup method, of the viscosity of vapors of H2O and D2O by the capillary method, of the thermal conductivity of molten salts by the transient hot-wire method, and of the thermal diffusivity by the optical method and of the thermal conductivity of high temperature gases by the shocktube method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nagashima, Appl. Mech. Rev. 41:113 (1988).

    Google Scholar 

  2. Y. Abe, H. Miyajima, O. Kosugiyama, and A. Nagashima, J. Chem. Soc. Faraday Trans. I 76:2531 (1980).

    Google Scholar 

  3. Y. Abe, O. Kosugiyama, and A. Nagashima, Ber. Bumenge. Phys. Chem. 84:1178 (1980).

    Google Scholar 

  4. Y. Abe, O. Kosugiyama, and A. Nagashima, J. Nucl. Mater. 99:1783 (1980).

    Google Scholar 

  5. T. Ito, N. Kojima, and A. Nagashima, Int. J. Thermophys. 10:819 (1989).

    Google Scholar 

  6. T. Ito, K. Minami, and A. Nagashima, Presented at 10th Symp. Thermophys. Prop., Gaithersburg, Md. (1988).

  7. J. Kestin and G. F. Newell, Z. Angew. Math. Phys. 8:433 (1957).

    Google Scholar 

  8. N. Matsunaga and A. Nagashima, Proc. 10th ICPS, Moscow (1984).

  9. N. Matsunaga and A. Nagashima, Ind. Eng. Chem. 9:409 (1988).

    Google Scholar 

  10. S. Abe, R. Fujioka, and A. Nagashima, Bull. JSME 21:142 (1978).

    Google Scholar 

  11. S. L. Rivkin, A. Ya. Levin, L. B. Izrailevsky, and K. G. Kharistonov, Presented at IAPS Workin Group meeting, London (1973).

  12. H. Kinoshita, S. Abe, and A. Nagashima, J. Chem. Eng. Data 23:16 (1978).

    Google Scholar 

  13. K. Kobayashi and A. Nagashima, High Temp. High Press. 17:131 (1985).

    Google Scholar 

  14. K. Kobayashi and A. Nagashima, Bull. JSME 28:1453 (1985).

    Google Scholar 

  15. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1973 (1986).

    Google Scholar 

  16. Y. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52:229 (1981).

    Google Scholar 

  17. Y. Nagasaka and A. Nagashima, J. Ind. Eng. Chem. Fund. 20:216 (1981).

    Google Scholar 

  18. Y. Nagasaka and A. Nagashima, J. Phys. E Sci. Instrum. 14:1435 (1981).

    Google Scholar 

  19. Y. Nagasaka, H. Okada, J. Suzuki, and A. Nagashima, Ber. Bunsenge. Phys. Chem. 87:859 (1983).

    Google Scholar 

  20. T. Omotani, Y. Nagasaka, and A. Nagashima, Int. J. Thermophys. 3:17 (1982).

    Google Scholar 

  21. T. Omotani and A. Nagashima, J. Chem. Eng. Data 29:1 (1984).

    Google Scholar 

  22. H. Bloom, A. Doroszkowski, and S. B. Tricklebank, Aust. J. Chem. 18:1171 (1965).

    Google Scholar 

  23. J. McDonald and H. T. Davis, J. Phys. Chem. 74:725 (1970).

    Google Scholar 

  24. S. Kitade, Y. Kobayashi, Y. Nagasaka, and A. Nagashima, High Temp. High Press. 21:219 (1989).

    Google Scholar 

  25. T. Hatakeyama, Y. Nagasaka, and A. Nagashima, Proc. 2nd ASME-JESME Therm. Eng. Joint Conf., Honolulu (1987), pp. 311–317.

  26. Y. Nagasaka, T. Hatakeyama, M. Okada, and A. Nagashima, Rev. Sci. Instrum. 59:1156 (1988).

    Google Scholar 

  27. M. Sakata, M. Shimada, and A. Nagashima, Proc. 2nd Asian Thermophys. Prop. Conf., Sapporo (1989), p. 87.

  28. T. Hatakeyama, K. Kadoya, S. Okuda, Y. Nagasaka, and A. Nagashima, Trans. JSME 53B:1590 (1987).

    Google Scholar 

  29. Y. Nagasaka, T. Hatakeyama, and A. Nagashima, Trans. JSME 53B:2545 (1987).

    Google Scholar 

  30. T. Hakakeyama, Y. Miyahashi, S. Okuda, Y. Nagasaka, and A. Nagashima, Trans. JSME 54B:1131 (1988).

    Google Scholar 

  31. N. Matsunaga, T. Hoshino, and A. Nagashima, Proc. 1983 Tokyo Int. Gas Turbine Congr., Tokyo (1983), pp. 321–328.

  32. J. Mostovsky and F. Slepicka, Warme-Stoffubertrag. 3:237 (1970).

    Google Scholar 

  33. J. Mastovsky and O. A. Kolencic, Czech. J. Phys. B31:399 (1981).

    Google Scholar 

  34. T. Hoshino, K. Mito, M. Miyara, and A. Nagashima, Int. J. Thermophys. 7:647 (1986).

    Google Scholar 

  35. K. Mito, D. Hisajima, N. Matsunaga, M. Miyata, and A. Nagashima, JSME Int. J. 30:1601 (1987).

    Google Scholar 

  36. M. V. Smirnov, V. A. Khokhlov, and A. A. Antonov, Trudi Inst. Elektrokhim. Ural. Nauch. Tsentr. AN SSSR 24:10 (1976).

    Google Scholar 

  37. T. Ejima, K. Shimakage, Y. Sata, H. Okuda, K. Numada, and A. Ishigaki, J. Chem. Soc. Jap. 961 (1982).

  38. T. Ejima, Y. Sato, and E. Takeuchi, Proc. 6th Jap. Symp. Thermophys. Prop., Sendai, 1985, p. 69.

  39. K. Torklep and H. A. Oye, Ber. Bunsenges. Phys. Chem. 83:1 (1979).

    Google Scholar 

  40. W. Brockner, K. Grjotheim, T. Ohta, and H. A. Oye, Ber. Bunsenges. Phys. Chem. 79:344 (1975).

    Google Scholar 

  41. T. Ito, N. Kojima, and A. Nagashima, Int. J. Thermophys. 10:819 (1989).

    Google Scholar 

  42. G. P. Bystrai, V. N. Desyatnik, and V. A. Zlokazov, Russ. J. Phys. Chem. 50:208 (1976).

    Google Scholar 

  43. V. I. Fedorov and V. I. Machuev, High Temp. 8:858 (1970).

    Google Scholar 

  44. M. V. Smirnov, V. A. Khokhlov, and E. S. Filatov, Electrochim. Acta 32:1019 (1987).

    Google Scholar 

  45. V. D. Golyshev, M. A. Goonik, V. A. Petrov, and Yu. M. Putilin, High Temp. 21:684 (1983).

    Google Scholar 

  46. N. Nakazawa, M. Akabori, Y. Nagasaka, and A. Nagashima, Trans. Jap. Soc. Mech. Eng. 56B:1467 (1990).

    Google Scholar 

  47. A. Cavero et al., Proc. 13th Int. Symp. Shock Tubes Waves, Niagara Falls (1981), p. 297.

  48. S. C. Saxena, High Temp. Sci. 4:517 (1972).

    Google Scholar 

  49. K. Willeke and D. Bershader, AIAA J. 7:2172 (1969).

    Google Scholar 

  50. R. A. Kuiper, AIAA Paper 69-694, San Francisco (1969).

  51. R. A. Matula, J. Heat Transfer 90:319 (1968).

    Google Scholar 

  52. D. J. Collins and W. A. Menard, J. Heat Transfer 88:52 (1966).

    Google Scholar 

  53. R. A. Aziz, Accurate Thermal Conductivity Coefficients for Argon Based on a State-of-the Art Interatomic Potential (University of Waterloo, Waterloo, 1986).

    Google Scholar 

  54. J. Kestin et al., J. Phys. Chem. Ref. Data 134:229 (1984).

    Google Scholar 

  55. I. Amdur and E. A. Mason, Phys. Fluids 1:370 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, A. Measurement of transport properties of high-temperature fluids. Int J Thermophys 12, 1–15 (1991). https://doi.org/10.1007/BF00506118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00506118

Key words

Navigation