Skip to main content
Log in

R-prime plasmids from Bradyrhizobium japonicum and Rhizobium fredii

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The formation of R-prime plasmids was selected in crosses involving soybean microsymbionts with genomic Tn5 insertions and carrying plasmid pJB3JI (with one IS2) copy as donors and Escherichia coli HB101 as recipient. Whereas the parent plasmid was 60 kb, recombinant plasmids between 76 kb and 121 kb were obtained. Restriction and Southern analyses confirmed the mobilization of Tn5 on four R-primes from Bradyrhizobium japonicum I-110 and on an R-prime plasmid from Rhizobium fredii HH303. The largest R-prime plasmid was obtained from the rescue of two symbiotically defective R. fredii mutant strains that required adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TDP:

transposon donor pool

References

  • Appelbaum ER, Johansen E, Chartrain N (1985) Symbiotic mutants of USDA 191, a fast-growing Rhizobium that nodulates soybeans. Mol Gen Genet 201:454–461

    Google Scholar 

  • Arunakumari A, Vidaver A (1986) Transposon mutagensis and excision of R-plasmids by conjugative, chimeric plasmid pUW942 in extra-slow-growing Rhizobium japonicum strains. Appl Environ Microbiol 51:6–11

    Google Scholar 

  • Banfalvi Z, Randhava GS, Kondorosi E, Kiss A, Kondorosi A (1983) Construction and characterization of R-prime plasmids carrying symbiotic genes of R. meliloti. Mol Gen Genet 189:129–135

    Google Scholar 

  • Beringer JE, Benyon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634

    Google Scholar 

  • Beringer JE, Hoggen SA, Johnston AWB (1978) Linkage mapping in Rhizobium leguminosarum by means of R-plasmid mediated recombination. J Gen Microbiol 104:201–207

    Google Scholar 

  • Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:413–420

    Google Scholar 

  • Burkardt HJ, Riess G, Puhler A (1979) Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68 and RK2 are identical. J Gen Microbiol 114:341–348

    Google Scholar 

  • Crosa JH, Falkow S (1981) Plasmids. In: Gerhardt P (ed-in-chief) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 269–270

    Google Scholar 

  • Currier TC, Morgan MK (1981) Restriction endonuclease analyses of the incompatibility group P-1 plasmids RK2, RP1, RP4, R68, and R68.45. Current Microbiol 5:323–327

    Google Scholar 

  • Dowdle SF, Bohlool BB (1985) Predominance of fast-growing Rhizobium japonicum in a soybean field in the People's Republic of China. Appl Environ Microbiol 50:1171–1176

    Google Scholar 

  • Haas D, Riess G (1983) Spontaneous deletions of the chromosome-mobilizing plasmids R68.45 in Pseudomonas aeruginosa PAO. Plasmid 9:42–52

    Google Scholar 

  • Hahn M, Hennecke H (1984) Localized mutagenesis in Rhizobium japonicum. Mol Gen Genet 193:46–52

    Google Scholar 

  • Itoh Y, Watson JM, Haas D, Leisinger T (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    Google Scholar 

  • Jorgensen RA, Rothstein SJ, Reznikoff WS (1979) A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol Gen Genet 177:65–72

    Google Scholar 

  • Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632

    Google Scholar 

  • Kim C, Kuykendall LD, Shah KS, Keister DL (1988) Induction of smybiotically defective auxotrophic mutants of Rhizobium fredii HH303 by transposon mutagenesis. Appl Environ Microbiol 54:423–427

    Google Scholar 

  • Kondorosi A, Kiss GB, Forrai Vincze TE, Banfalvi Z (1977) Circular linkage map of Rhizobium meliloti chromosomes. Nature 268:525–527

    Google Scholar 

  • Kuykendall LD (1979) Transfer of R factors to and between genetically marked sublines of Rhizobium japonicum. Appl Environ Microbiol 37:862–866

    Google Scholar 

  • Lanka E, Lurz R, Furste JP (1983) Molecular cloning and mapping of SphI restriction fragments of plasmid RP4. Plasmid 10:303–307

    Google Scholar 

  • Leonard LT (1943) A simple assembly for use in testing of cultures of Rhizobia. J Bacteriol 45: 523–527

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mazodier P, Cossart P, Giraud E, Gasser F (1985) Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13:195–205

    Google Scholar 

  • Meade IIM, Signer ER (1977) Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci USA 74:2076–2078

    Google Scholar 

  • Nayudu M, Rolfe BG (1987) Analysis of R-primes demonstrates that genes for broad host range nodulation of Rhizobium strain NGR234 are dispersed on the Sym plasmid. Mol Gen Genet 206:326–327

    Google Scholar 

  • Norris DO (1964) Technique used in work with Rhizobium. Commonwealth Bureau of Pastures and Field Crops Bershire Bulletin. 47:186–198.

    Google Scholar 

  • Pilacinski WP, Schmidt EL (1982) Plasmid transfer within and between serologically distinct strains of Rhizobium japonicum, using antibiotic resistance mutants and auxotrophs. J Bacteriol 145:1025–1030

    Google Scholar 

  • Rostas K, Sista PR, Stanley J, Verma DPS (1984) Transposon mutagenesis of Rhizobium japonicum. Mol Gen Genet 197:230–235

    Google Scholar 

  • Sadowsky MJ, Rostas K, Sista PR, Bussey H, Verma DPS (1986) Symbiotically defective histidine auxotrophs of Bradyrhizobium japonicum. Arch Microbiol 144:334–339

    Google Scholar 

  • Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 158:580–589

    Google Scholar 

  • Shah K, Kuykendall LD (1987) In vivo cloning of genes from Bradyrhizobium japonicum. In: Verma DPS, Brisson N (eds) Molecular genetics of plant-microbe interactions. Martinus Nijhoff Publishers, Boston, pp 288–291

    Google Scholar 

  • Sloger C (1969) Symbiotic effectiveness and N2 fixation in nodulated soybean. Plant Physiol 44:1666–1668

    Google Scholar 

  • So JS, Hodgson ALM, Haugland R, Leavitt M, Banfalvi Z, Nieuwkoop AJ, Stacey G (1987) Transposon-induced symbiotic mutants of Bradyrhizobium japonicum: Isolation of two gene regions essential for nodulation. Mol Gen Genet 207:15–23

    Google Scholar 

  • Thomas PM, Kuykendall LD, Angle JS (1986) Mobilization of Tn5 insertions from Rhizobium fredii by pJB3JI. Appl Environ Microbiol 52:206–208

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications. Oxford, England

    Google Scholar 

  • Willetts NS, Crowther C, Holloway BW (1981) The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome. Plasmid 6:30–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Scientific article number A-4728 and contribution number 7724 of the Maryland Agricultural Experiment Station

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, K.S., David Kuykendall, L. & Kim, CH. R-prime plasmids from Bradyrhizobium japonicum and Rhizobium fredii . Arch. Microbiol. 152, 550–555 (1989). https://doi.org/10.1007/BF00425485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425485

Key words

Navigation