Skip to main content
Log in

The Rhizobium leucaenae CFN 299 pSym plasmid contains genes expressed in free life and symbiosis, as well as two replication systems

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The alpha-protobacterium Rhizobium leucaenae CFN 299 is able to nodulate and fix nitrogen in symbiosis with a wide range of legumes, including Phaseolus vulgaris (common bean). Strain CFN 299 contains a 500-kb symbiotic plasmid (pSym) that encodes genes required for nodulation and nitrogen fixation as well as many genes whose function is unknown. In this work, we characterized the transcriptional expression of 16 pSym genes in common bean nodules and in free-living cells grown in culture. A functionally diverse group of genes were expressed during discrete stages of the symbiosis or in free-living cells. These included genes whose products are involved in nodulation and nitrogen fixation, carbon metabolism, vitamin synthesis, sulfur utilization, conjugation, transposition and DNA replication. We also examined the functionality of two replication systems encoded on pSym and found that repABC, but not repC2, is required for pSym replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164

    Article  PubMed  Google Scholar 

  • Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beringer JE (1974) R-factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buendia-Clavería AM, Moussaid A, Moreno FJ, Torres A, Ruiz-Sainz JE (1998) Symbiotic characteristics of a thiamine auxotroph of Rhizobium fredii HH103. In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, pp 479–479

  • Burris RH (1972) Nitrogen fixation assay-methods and techniques. Methods Enzymol 24:415–431

    Article  CAS  PubMed  Google Scholar 

  • Charles TC, Finan TM (1990) Genetic map of Rhizobium meliloti megaplasmid pRmeSU47B. J Bacteriol 172:2469–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DM, Li PL, Ruchaud F, Padden S, Farrand SK (1997) Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system. J Bacteriol 179:1291–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn MF (1998) Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol Rev 22:105–123

    Article  CAS  PubMed  Google Scholar 

  • Ellis HR (2011) Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg Chem 39:178–184

    Article  CAS  PubMed  Google Scholar 

  • Falla TJ, Chopra I (1999) Stabilization of Rhizobium symbiosis plasmids. Microbiology 145:515–516

    Article  CAS  PubMed  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

  • Fumeaux C, Bakkou N, Kopcinska J, Golinowski W, Westenberg DJ, Müller P, Perret X (2011) Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter. Microbiology 157:2745–2758

    Article  CAS  PubMed  Google Scholar 

  • Geniaux E, Flores M, Palacios R, Martínez E (1995) Presence of megaplasmids in Rhizobium tropici and further evidence of differences between the two R. tropici subtypes. Int J Syst Bacteriol 47:392–394

    Article  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254

    Article  CAS  PubMed  Google Scholar 

  • Han M, Yagura M, Itoh T (2007) Specific interaction between the initiator protein (Rep) and origin of plasmid ColE2-P9. J Bacteriol 189:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Lucas I, Pardo MA, Segovia L, Miranda J, Martínez-Romero E (1995a) Rhizobium tropici chromosomal citrate synthase gene. Appl Environ Microbiol 61:3992–3997

    PubMed  PubMed Central  Google Scholar 

  • Hernández-Lucas I, Segovia L, Martinez-Romero E, Pueppke SG (1995b) Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl Environ Microbiol 61:2775–2779

    PubMed  PubMed Central  Google Scholar 

  • Hernández-Lucas I, Mavingui P, Finan T, Chain P, Martínez-Romero E (2002) In vivo cloning strategy for Rhizobium plasmids. BioTechniques 33:1–4

  • Hernández-Lucas I, Ramírez-Trujillo JA, Gaitan MA, Guo X, Flores M, Martínez-Romero E, Pérez-Rueda E, Mavingui P (2006) Isolation and characterization of functional insertion sequences of rhizobia. FEMS Microbiol Lett 261:25–31

    Article  PubMed  Google Scholar 

  • Hungria M, Andrade DD, Chueire LMD, Probanza A, Guttierrez-Manero FJ, Megias M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    Article  CAS  Google Scholar 

  • Hynes MF, McGregor NF (1990) Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen fixing nodules by Rhizobium leguminosarum. Mol Microbiol 4:567–574

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo J, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Hernández-Lucas I, Sanjuan J, Cevallos MA (2005) An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 54:259–277

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:1–7

    Article  Google Scholar 

  • Kullik I, Fritsche S, Knobel H, Sanjuan J, Hennecke H, Fischer HM (1991) Bradyrhizobium japonicum has two differentially regulated, functional homologs of the sigma 54 gene (rpoN). J Bacteriol 173:1125–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 7:1870–1874

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • López-Fuentes E, Torres-Tejerizo G, Cervantes L, Brom S (2014) Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Front Microbiol 5:793

  • Martínez E, Palacios R, Sánchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp trees. Int J Syst Bacteriol 41:417–426

    Article  PubMed  Google Scholar 

  • Mavingui P, Flores M, Romero D, Martínez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15:564–569

    Article  CAS  PubMed  Google Scholar 

  • Michiels J, Moris M, Dombrecht B, Verreth C, Vanderleyden J (1998) Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J Bacteriol 180:3620–3628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda-Ríos J, Morera C, Taboada H, Dávalos A, Encarnación S, Mora J, Soberón M (1997) Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb 3 in Rhizobium etli. J Bacteriol 179:6887–6893

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJ, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–221

    Article  PubMed  Google Scholar 

  • Oke V, Long SR (1999) Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol Microbiol 32:837–849

    Article  CAS  PubMed  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LG, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:735

    Article  PubMed  PubMed Central  Google Scholar 

  • Ormeño-Orrillo E, Gomes DF, Del Cerro P, Vasconcelos AT, Canchaya C, Almeida LG, Mercante FM, Ollero FJ, Megías M, Hungria M (2016) Genome of Rhizobium leucaenae strains CFN 299(T) and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 17:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardo MA, Lagunez J, Miranda J, Martínez E (1994) Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol Microbiol 11:315–321

    Article  CAS  PubMed  Google Scholar 

  • Pinto UM, Pappas KM, Winans SC (2012) The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10:755–765

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Trujillo JA, Encarnación S, Salazar E, García-de los Santos A, Dunn MF, Emerich DW, Calva E, Hernández-Lucas I (2007) Functional characterization of the Sinorhizobium meliloti acetate metabolism genes aceA, SMc00767 and glcB. J Bacteriol 189:5875–5884

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Gomes Barcellos F, Martínez J, Lopes Thompson F, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1180–1185

    Article  Google Scholar 

  • Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogel MA, Bustos P, Santamaría RI, González V, Romero D, Cevallos MÁ, Lozano L, Castro-Mondragón J, Martínez-Romero J, Ormeño-Orrillo E, Martínez-Romero E (2014) Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genomics 15:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanov VI, Hernández-Lucas I, Martínez-Romero E (1994) Carbon metabolism enzymes of Rhizobium tropici cultures and bacteroids. Appl Environ Microbiol 60:2339–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg C, Huguet T (1984) The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumour induction. Mol Gen Genet 196:533–536

    Article  CAS  Google Scholar 

  • Rosenblueth M, Hynes MF, Martínez-Romero E (1998) Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol Gen Genet 258:587–598

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis TA (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y

  • Shamseldin A (2007) Use of DNA marker to select well-adapted Phaseolus-symbionts strains under acid conditions and high temperature. Biotechnol Lett 29:37–44

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338

    Article  CAS  PubMed  Google Scholar 

  • Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyeneshwar P (2011) Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. Mol Plant Microbe Interact 24:451–457

    Article  CAS  PubMed  Google Scholar 

  • Tully RE (1985) New culture media to suppress exopolysaccharide production by Rhizobium japonicum. Appl Microbiol Biotechnol 21:252–254

    Article  CAS  Google Scholar 

  • Wilkinson A, Danino V, Wisniewski-Dyé F, Lithgow JK, Downie JA (2002) N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 184:4510–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KJ, Huges SG, Jefferson RA (1992) The Escherichia coli gus operon, induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In: Gallagher SR (ed) Gus protocols, using the gus gene as a reporter of gene expression, vol 1. Academic, San Diego, CA, pp 7–23

    Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2001) Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M.A. Rogel-Hernández, M. F Mora, F. J. Santana, P. Gaytan, E. Bustos, S. Becerra, J. Yañez, M. L. Zavala, L. Medina-Aparicio, A. Vazquez and J. E. Rebollar-Flores for technical help. This work was supported by a grant from the Dirección General de Asuntos del Personal Académico, DGAPA/UNAM IN203215, to I.H.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Hernández-Lucas.

Additional information

Aurora Gamez-Reyes, Noé Becerra-Lobato and José Augusto Ramírez-Trujillo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Representative ethidium bromide-stained Eckhardt gels showing Rhizobium leucaenae plasmid profile. R. leucaenae CFN 299, containing 1.5 MB megaplasmid, the 500 kb symbiotic (pSym) plasmid, plasmid B of 240 kb and plasmid A 185 kb. CFN 299-10 lacking pB and 300 kb fragment of pSym. The plasmid profile of CFN 299 derivatives generated in this work is also shown (DOCX 257 kb)

Fig. S2

Autoradiogram of Southern blot of HindIII digested genomic DNA hybridized with pVO155 probe. CFN 299 and CFN 299-10 shows no hybridization signal. The CFN 299 derivatives generated in this work only present a single hybridization band (DOCX 464 kb)

Table S1

(DOCX 37 kb)

Table S2

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamez-Reyes, A., Becerra-Lobato, N., Ramírez-Trujillo, J.A. et al. The Rhizobium leucaenae CFN 299 pSym plasmid contains genes expressed in free life and symbiosis, as well as two replication systems. Ann Microbiol 67, 263–273 (2017). https://doi.org/10.1007/s13213-017-1257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1257-3

Keywords

Navigation