Skip to main content
Log in

Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 μM) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 μM) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Baresi L, Wolfe RS (1981) Levels of coenzyme F 420, coenzyme M, hydrogenase, and methylcoenzyme M, methylreductase in acetate-grown Methanosarcina. Appl Environ Microbiol 41:388–391

    Google Scholar 

  • Blaut M, Gottschalk G (1982) Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch Microbiol 133:230–235

    Google Scholar 

  • Bode C, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z klin Chem klin Biochem 5:419–422

    Google Scholar 

  • Buswell AM, Sollo FW (1948) The mechanism of methane fermentation. J Am Chem Soc 70:1778–1780

    Google Scholar 

  • Conrad R, Thauer RK (1983) Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 20:229–232

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • Diekert G, Thauer RK (1978) Carbon monoxide oxidation by Clostridium pasteurianum and Clostridium formicoaceticum. J Bacteriol 136:597–606

    Google Scholar 

  • Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F 430 content of methanogenic bacteria. J Bacteriol 148:459–464

    Google Scholar 

  • Diekert G, Ritter M (1983) Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2. FEMS Microbiol Lett 17:299–302

    Google Scholar 

  • Diekert G, Hansch M, Conrad R (1984) Acetate synthesis from 2CO2 in acetogenic bacteria: Is carbon monoxide an intermechate? Arch Microbiol 138:224–228

    Google Scholar 

  • Ellefson WL, Wolfe RS (1980) Role of component C in the methylreductase system of Methanobacterium. J Biol Chem 255:8388–8389

    Google Scholar 

  • Ellefson WL, Wolfe RS (1981) Component C of the methylreductase system of Methanobacterium. J Biol Chem 256:4259–4262

    Google Scholar 

  • Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F 430: Chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710

    Google Scholar 

  • Fathepure BZ (1983) Isolation and characterization of an aceticlastic methanogen from a biogas digester. FEMS Microbiol Lett 19:151–156

    Google Scholar 

  • Ferguson TJ, Mah RA (1983) Effect of H2−CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl Environ Microbiol 46:348–355

    Google Scholar 

  • Fuchs G, Schnitker U, Thauer RK (1974) Carbon monoxide oxidation by growing cultures of Clostridium pasteurianum. Eur J Biochem 49:111–115

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498

    Google Scholar 

  • Höllriegl V, Scherer P, Renz P (1983) Isolation and characterization of the Co-methyl and Co-aquo derivative of 5-hydroxybenzimidazolylcobamide (factor III) from Methanosarcina barkeri grown on methanol. FEBS Lett 151:156–158

    Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448

    Google Scholar 

  • Kenealy WR, Zeikus JG (1982) One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J Bacteriol 151:932–941

    Google Scholar 

  • Krzycki JA, Zeikus JG (1980) Quantification of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245

    Google Scholar 

  • Krzycki JA, Wolkin RH, Zeikus JG (1982) Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J Bacteriol 149:247–254

    Google Scholar 

  • Kühn W, Gottschalk G (1983) Characterization of the cytochromes occuring in Methanosarcina species. Eur J Biochem 135:89–94

    Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  • Mah RA, Smith MR, Ferguson T, Zinder S (1981) Methanogenesis from H2−CO2-methanol, and acetate by Methanosarcina. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, Philadelphia, Rheine, pp 131–142

    Google Scholar 

  • McBride BC, Wolfe RS (1971) A new coenzyme of methyl transfer, coenzyme M. Biochemistry 10:2317–2324

    Google Scholar 

  • Meijden van der P, Heythuysen HJ, Sliepenbeck HT, Houwen FP, van der Drift C, Vogels GD (1983a) Activation and inactivation of methanol: 2-mercaptoethanesulfonic acid methyltransferase from Methanosarcina barkeri. J Bacteriol 153:6–11

    Google Scholar 

  • Meijden van der P, Heythuysen HJ, Pouwels A, Houwen F, van der Drift C, Vogels GD (1983b) Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol 134:238–242

    Google Scholar 

  • Moura I, Moura JJG, Santos H, Xavier AV, Burch G, Peck HD Jr, LeGall J (1983) Proteins containing the factor F430 from Methanosarcina barkeri and Methanobacterium thermoautotrophicum. Isolation and properties. Biochim Biophys Acta 742:84–90

    Google Scholar 

  • Mullen A (1980) Carbonylation catalyzed by metal carbonyls —Reppe reactions. New syntheses with carbon monoxide. In: Falbe J (ed) Reactivity and structure concepts in organic chemistry, 11. Springer, Berlin Heidelberg New York, pp 286–290

    Google Scholar 

  • Pine MJ, Barker HA (1956) Studies on the methane fermentation. XII The pathway of hydrogen in the acetate fermentation. J Bacteriol 71:644–648

    Google Scholar 

  • Pol A, van der Drift C, Vogels GD (1982) Corrinoids from Methanosarcina barkeri: structure of the α-ligand. Biochem Biophys Res Commun 103:731–737

    Google Scholar 

  • Scherer P, Sahm H (1979) Züchtung von Methanosarcina barkeri auf Methanol oder Acetat in einem definierten Medium. In: Dellweg H (ed) Symposium Technische Mikrobiologie Berlin

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Shapiro S, Wolfe RS (1980) Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri. J Bacteriol 141:728–734

    Google Scholar 

  • Simon H, Floss HG (1967) Bestimmung der Isotopenverteilung in markierten Verbindungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Smith MR, Mah RA (1980) Acetate as sole carbon and energy source for growth of Methanosarcina strain 227. Appl Environ Microbiol 39:993–999

    Google Scholar 

  • Smith MR, Zinder SH, Mah RA (1980) Microbial Methanogenesis from acetate. Proc Biochemistry 15:34–39

    Google Scholar 

  • Smith MR, Hart M, Weiss M (1983) Effect of cyanide on metabolism of methanogenic substrates by Methanosarcina. Ann Meeting Am Soc Microbiol 17. Abstract

  • Stadtman TC, Barker HA (1949) Studies on the methane fermentation. VII. Tracer experiments on the mechanism of methane formation. J Biochem 21:256–264

    Google Scholar 

  • Stupperich E, Fuchs G (1983) Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium. FEBS Lett 156:345–348

    Google Scholar 

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23

    Google Scholar 

  • Taylor CD, Wolfe RS (1974) Structure and methylation of coenzyme M (HSCH2CH2−SO3). J Biol Chem 249:4879–4885

    Google Scholar 

  • Thauer RK, Rupprecht E, Jungermann K (1970) Separation of 14C-formate from CO2 fixation metabolites by isoionic-exchange chromatography. Anal Biochem 88:461–468

    Google Scholar 

  • Thauer RK, Fuchs G, Käufer B, Schnitker U (1974) Carbonmonoxide oxidation in cell-free extracts of Clostridium pasteurianum. Eur J Biochem 45:343–349

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Thauer RK, Brandis-Heep A, Diekert G, Gilles HH, Graf EG, Jaenchen R, Schönheit P (1983) Drei neue Nickelenzyme aus anaeroben Bakterien. Naturwissenschaften 70:60–64

    Google Scholar 

  • Touzel JP, Albagnac G (1983) Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol Lett 16:241–245

    Google Scholar 

  • Vogels GD, Visser CM (1984) Interconnection of methanogenic and acetogenic pathways. FEMS Microbiol Lett 20:291–297

    Google Scholar 

  • Wolfe RS, Higgins IJ (1979) Microbial Biochemistry of methane —a study in constrasts. Microbiol Biochemistry. Int Rev Biochem 21:267–353

    Google Scholar 

  • Wood HG, Drake HL, Hu SI (1982) Studies with Clostridium thermoaceticum and the resolution of the pathway used by acetogenic bacteria that grow on carbon monoxide or carbon dioxide and hydrogen. Proc Biochem Symp 29-56

  • Zehnder AJB, Brock TD (1979) Biological energy production in the apparent absence of electron transport and substrate level phosphorylation. FEBS Lett 107:1–3

    Google Scholar 

  • Zeikus JG (1983) Metabolism of one-carbon compounds by chemotrophic anaerobes. Adv Microb. Physiol 24:215–299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eikmanns, B., Thauer, R.K. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138, 365–370 (1984). https://doi.org/10.1007/BF00410905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00410905

Key words

Navigation