Skip to main content
Log in

Effect of Organic Nutrients on the Activity of Archaea of the Ferroplasmaceae Family

  • Microbiology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The effect of different organic compounds (glucose, fructose, ribose, glycine, alanine, pyruvate, acetate, citrate, and yeast extract) as well as of the wastes of food production (molasses, stillage, sweet whey), on the growth of iron-oxidizing acidophilic microorganisms and biooxidation of ferrous iron was studied. Representatives of the microorganisms predominating in biohydrometallurgical processes—archaea of the family Ferroplasmaceae (A. aeolicum V1T, A. cupricumulans BH2T, Acidiplasma sp. MBA-1, Ferroplasma acidiphilum B-1) and bacteria of the genus Sulfobacillus (S. thermosulfidooxidans SH 10–1, S. thermotolerans Kr1T)—were the subjects of the study. All studied strains most actively grew and oxidized ferrous iron in the presence of yeast extract, which is probably due to the presence of a large number of different growth factors in its composition, while others substrates provided growth of microorganisms and ferrous iron oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, D.B., Biomining—biotechnologies for extracting and recovering metals from ores and waste materials, Curr. Opin. Biotechnol., 2014, vol. 30, pp. 24–31.

    Article  PubMed  CAS  Google Scholar 

  2. Schippers, A., Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification, in Microbial Processing of Metal Sulfides, Donati, E.R. and Sand, W., Eds., New York: Springer, 2007, pp. 3–33.

    Google Scholar 

  3. Hawkes, R.B., Franzmann, P.D., O’Hara, G., and Plumb, J.J., Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaea isolated from an industrial-scale chalcocite bioleach heap, Extremophiles, 2006, vol. 10, no. 6, pp. 525–530.

    Article  PubMed  CAS  Google Scholar 

  4. Zhou, H., Zhang, R., Hu, P., Zeng, W., Xie, Y., Wu, C., and Qiu, G., Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite, J. Appl. Microbiol., 2008, vol. 105, no. 2, pp. 591–601.

    Article  PubMed  CAS  Google Scholar 

  5. Li, Q., Tian, Y., Fu, X., Yin, H., Zhou, Z., Liang, Y., Qiu, G., Liu, J., Liu, H., Liang, Y., Shen, L., Cong, J., and Liu, X., The community dynamics of major bioleaching microorganisms during chalcopyrite leaching under the effect of organics, Curr. Microbiol., 2011, vol. 63, no. 2, pp. 164–172.

    Article  PubMed  CAS  Google Scholar 

  6. van Hille, R.P., van Wyk, N., Froneman, T., and Harrison, S.T.L., Dynamic evolution of the microbial community in BIOX leaching tanks, Adv. Mater. Res., 2013, vol. 825, pp. 331–334.

    Google Scholar 

  7. Muravyov, M.I. and Bulaev, A.G., Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation, Miner. Eng., 2013, vol. 45, pp. 108–114.

    Article  CAS  Google Scholar 

  8. Golyshina, O.V. and Timmis, K.N., Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments, Environ. Microbiol., 2005, vol. 7, no. 9, pp. 1277–1288.

    Article  PubMed  CAS  Google Scholar 

  9. Zakharchuk, L.M., Egorova, M.A., Krasil’nikova, E.N., Tsaplina, I.A., Bogdanova, T.I., Melamud, V.S., and Karavaiko, G.I., Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation, Microbiology, 2003, vol. 72, no. 5, pp. 553–557.

    Article  CAS  Google Scholar 

  10. Zakharchuk, L.M., Tsaplina, I.A., Krasil’nikova, E.N., Bogdanova, T.I., and Karavaiko, G.I., Carbon metabolism in Sulfobacillus thermosulfidooxidans, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 573–580.

    CAS  Google Scholar 

  11. Karavaiko, G.I., Tsaplina, I.A., Bogdanova, T.I., Krasil’nikova, E.N., and Zakharchuk, L.M., Growth and carbohydrate metabolism of sulfobacilli, Microbiology, 2001, vol. 70, no. 3, pp. 245–250.

    Article  CAS  Google Scholar 

  12. Egorova, M.A., Zakharchuk, L.M., Krasil’nikova, E.N., Tsaplina, I.A., and Bogdanova, T.I., Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41, Appl. Biochem. Microbiol., 2004, vol. 40, no. 4, pp. 381–387.

    Article  CAS  Google Scholar 

  13. Vartanyan, N.S., Karavaiko, G.I., and Pivovarova, T.A., Effect of organic substances on the growth and oxidation of inorganic substrates in Sulfobacillus thermosulfidooxidans subsp. asporogenes, Mikrobiologiya, 1990, vol. 59, no. 3, pp. 411–417.

    CAS  Google Scholar 

  14. Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat’eva, T.F., Moore, E.R.B., Abraham, W., Lunsdorf, H., Timmis, K.N., Yakimov, M.M., and Golyshin, P.N., Ferroplasma acidiphilum gen. nov., sp. nov., anacidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 3, pp. 997–1006.

    Article  PubMed  CAS  Google Scholar 

  15. Golyshina, O.V., Yakimov, M.M., Lunsdorf, H., Ferrer, M., Nimtz, M., Timmis, K.N., Wray, V., Tindall, B.J., and Golyshin, P.N., Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. Nov., Int. J. Syst. Evol. Microbiol., 2009, vol. 59, no. 11, pp. 2815–2824.

    Article  PubMed  CAS  Google Scholar 

  16. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, no. 6, pp. 2882–2886.

    PubMed  CAS  Google Scholar 

  17. Schwarzenbach, G. and Flaschka, H., Complexometric Titrations, London: Methuen, 1969.

    Google Scholar 

  18. Delaney, R.A.M., Composition, properties and uses of whey protein concentrates, J. Soc. Dairy Technol., 1976, vol. 29, no. 2, pp. 91–101.

    Article  CAS  Google Scholar 

  19. Kristiansen, B., Linden, J., and Mattey, M., Citric Acid Biotechnology, London: Taylor & Francis, 2002.

    Google Scholar 

  20. Krzywonos, M., Cibis, E., Miśkiewicz, T., and Ryznar-Luty, A., Utilization and biodegradation of starch stillage (distillery wastewater), Electron. J. Biotechnol., 2009, vol. 12, no. 1. doi 10.2225/vol12-issue1-fulltext-5

    Google Scholar 

  21. Borischewski, R.M., Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus thiooxidans, J. Bacteriol., 1967, vol. 93, no. 2, pp. 597–599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bulaev.

Additional information

Original Russian Text © A.G. Bulaev, T.V. Erofeeva, K.S. Vorobeva, G.G. Chelidze, A.A. Ramonova, 2018, published in Vestnik Moskovskogo Universiteta, Seriya 16: Biologiya, 2018, Vol. 73, No. 3, pp. 178–184.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulaev, A.G., Erofeeva, T.V., Vorobeva, K.S. et al. Effect of Organic Nutrients on the Activity of Archaea of the Ferroplasmaceae Family. Moscow Univ. Biol.Sci. Bull. 73, 146–152 (2018). https://doi.org/10.3103/S0096392518030033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392518030033

Keywords

Navigation