Skip to main content
Log in

Components of antioxidant systems in the cells of aerotolerant sulfate-reducing bacteria of the genus Desulfovibrio (strains A2 and TomC) isolated from metal mining waste

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Two strains of sulfate-reducing bacteria of the genus Desulfovibrio (A2 and TomC) isolated from metal mining waste were able to grow on agar Postgate C nutrient medium under microaerobic conditions. Since their growth in liquid nutrient medium was just slightly affected by 1% O2 (initial concentration in the gas phase) and 0.05–0.1 mM H2O2, these strains were relatively oxygen-tolerant. Only the presence of oxidants in high concentrations (5–10% О2 or 0.3–1.0 mM H2O2) resulted in practically complete inhibition of their growth. Strain A2 was more resistant to oxidative stresses than strain TomC. Activities of the key enzymes of antioxidant defense—superoxide dismutase (SOD), catalase, and peroxidase—were revealed in the cell-free extracts of strain A2 grown under strict anaerobic conditions. While strain TomC was found to possess no peroxidase activity, its catalase activity was much higher than that of strain A2 (36 and 2 U/mg protein, respectively). SOD activity of both strains was almost the same (5 U/mg protein). Sublethal H2O2 doses (concentration of 0.05–0.15 mM and exposure for 45–240 min) resulted in a drastic increase of catalase activity, especially in strain A2. Sublethal О2 doses (1–2% in the gas phase) had no significant effect on activities of the antioxidant enzymes of both strains. The cytochrome composition determined from the absolute absorption spectra of the whole cells of strains TomC and A2 revealed the presence of the c heme (438 and 831 pmol/mg protein) and the d heme (336 and 303 pmol/mg protein, respectively). The presence of the d heme indicated the presence of the bd heme–heme quinol oxidase, which together with the c heme may provide for the functioning of the electron transport segment of the antioxidant defensive system, which is responsible for aerotolerance of sulfate-reducing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgarten, A., Redenius, I., Kranczoch, J., and Cypionka H., Periplasmic oxygen reduction by Desulfovibrio species, Arch. Microbiol., 2001, vol. 176, pp. 306–309.

    Article  CAS  PubMed  Google Scholar 

  • Belevich, I., Borisov, V.B., Zhang, J., Yang, K., Konstantinov, A.A., Gennis, R.B., and Verkhovsky, M.I., Timeresolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the diheme active site, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 3657–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry E.A., Trumpower B.L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra, Anal. Biochem. 1987, vol. 161, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Brioukhanov, A.L., Durand, M.-C., Dolla, A., and Aubert, C., Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide: enzymatic and transcriptional analyses, FEMS Microbiol. Lett., 2010, vol. 310, pp. 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Brioukhanov, A., Pieulle, L., and Dolla, A., Antioxidative defense systems of anaerobic sulfate-reducing microorganisms, in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotecnology, Mendez-Vilas, A., Ed, Badajoz: Formatex Research Center, 2010, vol. 1, pp. 148–159.

    Google Scholar 

  • Bryukhanov, A.L., Netrusov, A.I., Shestakov, A.I., and Kotova, I.B., Metody issledovaniya anaerobnykh mikroorganizmov (Methods for Investigation of Anaerobic Microorganisms), Moscow: Nauch. Bibl. MGU, 2015.

    Google Scholar 

  • Coulter, E.D. and Kurtz, D.M., A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase, Arch. Biochem. Biophys., 2001, vol. 394, pp. 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Cypionka, H., Oxygen respiration by Desulfovibrio species, Annu. Rev. Microbiol., 2000, vol. 54, pp. 827–848.

    Article  CAS  PubMed  Google Scholar 

  • Cypionka, H., Widdel, F., and Pfenning, N., Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen sulfide gradients, FEMS Microbiol. Ecol., 1985, vol. 31, pp. 39–45.

    CAS  Google Scholar 

  • Dannenberg, S., Kroder, M., Dilling, W., and Cypionka, H., Oxidation of H2,organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria, Arch. Microbiol., 1992, vol. 158, pp. 93–99.

    Article  CAS  Google Scholar 

  • Davydova, M.N. and Sabirova, R.Z., Anti-oxidant defence of the cell Desulfovibrio desulfuricans B-1388, Anaerobe, 2003, vol. 9, pp. 39–41.

    Article  CAS  PubMed  Google Scholar 

  • Dolla, A., Fournier, M., and Dermoun, Z., Oxygen defense in sulfate-reducing bacteria, J. Biotechnol., 2006, vol. 126, pp. 87–100.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos, W.G., Pacheco, I., Liu, M.-Y., Teixeira, M., Xavier, A.V, and LeGall, J., Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bacterium Desulfovibrio gigas, J. Bacteriol., 2000, vol. 182, pp. 796–804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fareleira, P., Santos, B.S., Antonio, C, Moradas-Ferreira, P., LeGall, J., Xavier, A.V., and Santos, H., Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas, Microbiology (UK), 2003, vol. 149, pp. 1513–1522.

    Article  CAS  Google Scholar 

  • Fournier, M., Aubert, C., Dermoun, Z., Durand, M.-C., Moinier, D., and Dolla, A., Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis, Biochimie, 2006, vol. 88, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, M., Zhang, Y., Wildschut, J.D., Dolla, A., Voordouw, J.K., Schriemer, D.C., and Voordouw, G., Function of oxygen resistance proteins in the anaerobic, sulfatereducing bacterium Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 2003, vol. 185, pp. 71–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazao, C., Silva, G., Gomes, C.M., Matias, P., Coelho, R., Sieker, L., Macedo, S., Liu, M.Y., Oliveira, S., Teixeira, M., Xavier, A.V., Rodrigues-Pousada, C., Carrondo, M.A., and Le Gall, J., Structure of dioxygen reduction enzyme from Desulfovibrio gigas, Nat. Struct. Biol., 2000, vol. 7, pp. 1041–1045.

    Article  CAS  PubMed  Google Scholar 

  • Gallati, H., Horseradish peroxidase: a study of the kinetics and the determination of optimal reaction conditions, using hydrogen peroxide and 2,2'-azinobis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) as substrates, J. Clin. Chem. Clin. Biochem., 1979, vol. 17, pp. 1–7.

    CAS  PubMed  Google Scholar 

  • Imlay, J.A., How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis, Adv. Microb. Physiol., 2002, vol. 46, pp. 111–153.

    Article  CAS  PubMed  Google Scholar 

  • Jenney, F.E., Verhagen, M.F., Cui, X., and Adams, M.W., Anaerobic microbes: oxygen detoxification without superoxide dismutase, Science, 1999, vol. 286, no. 5438, pp. 306–309.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M.S., Zhulin, I.B., Gapuzan, M.E., and Taylor, B.L., Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 1997, vol. 179, pp. 5598–5601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnachuk, O.V., Mardanov, A.V., Avakyan, M.R., Kadnikov, V.V., Vlasova, M., Beletsky, A.V., Gerasimchuk, A.L., and Ravin, N.V., Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment, FEMS Microbiol Lett., 2015, vol. 362, no. 4. doi 10.1093/femsle/fnv007

  • Karnachuk, O.V., Sasaki, K., Gerasimchuk, A.L., Sukhanova, O., Ivasenko, D.A., Kaksonen, A.H., Puhakka, J.A., and Tuovinen, O.H., Precipitation of Cu-sulfides by copper-tolerant Desulfovibrio isolates, Geomicrobiol. J., 2008, vol. 25, pp. 219–227.

    Article  CAS  Google Scholar 

  • Krekeler, D., Teske, A., and Cypionka, H., Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat, FEMS Microbiol. Ecol., 1998, vol. 25, pp. 89–96.

    Article  CAS  Google Scholar 

  • Lamrabet, O., Pieulle, L., Aubert, C., Mouhamar, F., Stocker, P., Dolla, A., and Brasseur, G., Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases, Microbiology (UK), 2011, vol. 157, pp. 2720–2732.

    Article  CAS  Google Scholar 

  • Lemos, R.S., Gomes, C.M., Santana, M., LeGall, J., Xavier, A.V., and Teixeira, M., The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain, FEBS Lett., 2001, vol. 496, pp. 40–43.

    Article  CAS  PubMed  Google Scholar 

  • Lumppio, H.L., Shenvi, N.V., Summers, A.O., Voordouw, G., and Kurtz, D.M., Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system, J. Bacteriol., 2001, vol. 183, pp. 101–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado, P., Felix, R., Rodrigues, R., Oliveira, S., and Rodrigues-Pousada, C., Characterization and expression analysis of the cytochrome bd oxidase operon from Desulfovibrio gigas, Curr. Microbiol., 2006, vol. 52, pp. 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Manchini, S., Abicht, H.K., Karnachuk, O.V., and Solioz M., Genome sequence of Desulfovibrio sp. A2 a highly copper resistant,sulfate-reducing bacterium isolated from effluents of a zinc smelter at the Urals, J. Bacteriol., 2011, vol. 193, pp. 6793–6794.

    Article  Google Scholar 

  • McCord, J.M. and Fridovich, I., The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen, J. Biol. Chem., 1969, vol. 244, pp. 6056–6063.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, A., Redding, A.M., Joachimiak, M.P., Arkin, A.P., Borglin, S.E., Dehal, P.S., Chakraborty, R., Geller, J.T., Hazen, T.C., He, Q., Joyner, D.C., Martin, V.J.J., Wall, J.D., Yang, Z.K., Zhou, J., and Keasling, J.D., Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 2007, vol. 189, pp. 5996–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, D.P. and Kiesow, L.A., Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solutions in the UV), Anal. Biochem., 1972, vol. 49, pp. 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, P.M., He, Q., Xavier, A.V., Zhou, J., Pereira, I.A.C., and Louro, R.O., Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions, Arch. Microbiol., 2008, vol. 189, pp. 451–461.

    Article  CAS  PubMed  Google Scholar 

  • Pierik, A.J., Wolbert, R.B.G., Portier, G.L., Verhagen, M.F.J.M., and Hagen, W.R., Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters, Eur. J. Biochem., 1993, vol. 212, pp. 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Sigalevich, P., Meshorer, E., Helman, Y., and Cohen, Y., Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation, Appl. Environ. Microbiol., 2000, vol. 66, pp. 5005–5012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, G., LeGall, J., Xavier, A.V., Teixeira, M., and Rodrigues-Pousada, C., Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes, J. Bacteriol., 2001, vol. 183, pp. 4413–4420.

    CAS  PubMed  Google Scholar 

  • Wildschut, J.D., Lang, R.M., Voordouw, J.K., and Voordouw, G., Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions, J. Bacteriol., 2006, vol. 188, pp. 6253–6260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Bryukhanov.

Additional information

Original Russian Text © A.L. Bryukhanov, V.A. Korneeva, T.Yu. Dinarieva, O.V. Karnachuk, A.I. Netrusov, N.V. Pimenov, 2016, published in Mikrobiologiya, 2016, Vol. 85, No. 6, pp. 625–634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhanov, A.L., Korneeva, V.A., Dinarieva, T.Y. et al. Components of antioxidant systems in the cells of aerotolerant sulfate-reducing bacteria of the genus Desulfovibrio (strains A2 and TomC) isolated from metal mining waste. Microbiology 85, 649–657 (2016). https://doi.org/10.1134/S0026261716060047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261716060047

Keywords

Navigation