Skip to main content
Log in

Fictive component model of pyroxenes and multicomponent phase equilibria

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Pyroxenes are considered as ideal solid solutions of some real components (e.g. diopside or orthoenstatite) and some fictive or hypothetical components (e.g. orthodiopside or orthohedenbergite). Using the reversed experimental data in the CaO-MgO-SiO2 system, the Gibbs free energy of formation of fictive orthodiopside and of fictive clinoenstatite have been determined in the temperature range of 1,000 to 1,600 °K. The data on free energies of components in the binary system can be used to extend the fictive component model to the ternary CaSiO3-MgSiO3-FeSiO3 system. Using published phase diagrams on the pyroxene quadrilateral, Gibbs free energy of formation of fictive orthohedenbergite has been calculated. Application of the ideally mixing fictive component model to computation of phase equilibria leads to the determination of compositions of coexisting Fe-Mg-Ca pyroxenes at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G 0f :

Gibbs free energy of formation from the elements at 1 bar and temperature

G Ex :

excess free energy of mixing in a solution

G :

molar Gibbs free energy

R :

gas constant

H :

enthalpy

S :

entropy

T :

absolute temperature

P :

pressure

KJ/M:

kilojoules per mole

j:

joules

Opx:

orthopyroxene

Cpx:

clinopyroxene

H:

hedenbergite

D:

diopside

E:

enstatite

F:

ferrosilite

X :

mole fraction

K :

equilibrium constant

References

  • Atkins FB (1969) Pyroxenes of the Bushveld intrusion, South Afric. J Petrol 10:222–249

    Google Scholar 

  • Brown GM (1957) Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, East Greenland. Mineral Mag 31:511–543

    Google Scholar 

  • Erikkson G (1976) Quantitative equilibrium calculations in multiphase systems at high temperatures with special reference to the roasting of chalcopyrite (CuFeS2). Akademisk Avhandling, Umea University, Sweden

    Google Scholar 

  • Eriksson G, Rosen E (1973) Thermodynamic studies of high temperature equilibria. Chemica Scripta 4:193–194

    Google Scholar 

  • Grossman L (1972) Condensation in the primitive solar nebula. Geochim Cosmochim Acta 36:109–128

    Article  Google Scholar 

  • Harvie CE, Weare JH (1980) The prediction of mineral solubilities in natural waters. The Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25° C. Geochim Cosmochim Acta 44:981–997

    Article  Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt H, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–250

    Google Scholar 

  • Holland TJB, Navrotsky A, Newton RC (1979) Thermodynamic parameters of CaMgSi2O6-Mg2Si2O6 pyroxenes based on regular solution and cooperative disordering models. Contrib Mineral Petrol 69:337–344

    Google Scholar 

  • Howie RA (1955) The geochemistry of the charnockite series of Madras, India. Trans R Soc Edinburgh 62:725–768

    Google Scholar 

  • Howie RA (1958) African charnockites and related rocks. Service Geol Congo Belge Bull 8:1–14

    Google Scholar 

  • Leelanandam C (1967) Chemical study of pyroxenes from the charnockitic rocks of Kondapalli (Andhra Pradesh), India. Mineral Mag 36:153–179

    Google Scholar 

  • Lindsley DH, Dixon S (1976) Diopside-enstatite equilibria at 850° C to 1,400° C, 5 to 35 kb. Am J Sci 276a:295–324

    Google Scholar 

  • Lindsley DH, Grover JE, Davidson PM (1981) The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: A review and a new model. In: Newton, Navrotsky and Wood (eds) Advances in physical geochemistry, Vol 1. Springer-Verlag, NY

    Google Scholar 

  • Lindsley DH (1980) Phase equilibria of pyroxenes at pressures 1 atmosphere. In: CT Prewitt (ed) Reviews in mineralogy, Vol 7. Mineral Soc Am, pp 289–308

  • Mori T, Green DH (1975) Pyroxenes in the system Mg2Si2O6-CaMg-Si2O6 at high pressure. Earth Planet Sci Lett 26:277–286

    Article  Google Scholar 

  • Nehru CE, Wyllie PJ (1974) Electron-microprobe measurement of pyroxenes coexisting with H2O-undersaturated liquid in the join CaMgSi2O6-Mg2Si2O6 at 30 kbars with application to geothermometry. Contrib Mineral Petrol 48:221–228

    Google Scholar 

  • Saxena SK (1973) Thermodynamics of rock-forming crystalline solutions. Springer-Verlag, NY

    Google Scholar 

  • Saxena SK (1981) The MgO-Al2O3-SiO2 system: Free energy of pyrope and Al2O3-enstatite. Geochim Cosmochim Acta 45:821–825 (1981)

    Article  Google Scholar 

  • Warner RD, Luth WC (1974) The diopside-clinoenstatite two phase region in the system CaMgSi2O6-Mg2Si2O6. Am Mineral 59:98–109

    Google Scholar 

  • Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, S.K. Fictive component model of pyroxenes and multicomponent phase equilibria. Contr. Mineral. and Petrol. 78, 345–351 (1982). https://doi.org/10.1007/BF00398930

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398930

Keywords

Navigation