Skip to main content
Log in

Fine-structural characterization of plant microbodies

  • Published:
Planta Aims and scope Submit manuscript

Summary

Morphology and distribution of the relatively less well known organelles of plants have been studied with the electron microscope in tissues fixed in glutaraldehyde and postfixed in osmium tetroxide. An organelle comparable morphologically to the animal microbody and similar to the plant microbody isolated by Mollenhauer et al. (1966) has been encountered in a variety of plant species and tissues, and has been studied particularly in bean and radish roots, oat coleoptiles, and tobacco roots, stems and callus. The organelle has variable shape and is 0.5 to 1.5 μ in the greatest diameter. It has a single bounding membrane, a granular to fibrillar matrix of variable electron density, and an intimate association with one or two cisternae of rough endoplasmic reticulum (ER). Microbodies are easily the most common and generally distributed of the less well characterized organelles of plant cells. It seems very probable that they contain the enzymes characteristic of animal lysosomes (containing hydrolases) or animal microbodies (containing catalase and certain oxidases). Spherosomes are also possible sites of enzyme activity but are not as common or as widely distributed as microbodies. For this reason it appears likely that the particles designated as “plant lysosomes”, “spherosomes”, “peroxisomes”, etc., in some of the cytochemical and biochemical studies on enzyme localization will prove to be microbodies.

Variations in the morphology and ER associations of microbodies in tissues of bean and radish are described and discussed. “Crystal-containing bodies” (CCBs) are interpreted as a specialized type of microbody characteristic of metabolically less active cells. Stages in the formation of CCBs from microbodies of typical appearance are illustrated for Avena.

The general occurrence of microbodies in meristematic and differentiating cells and their close association with the ER suggest that they may play active roles in cellular metabolism. The alterations in their morphology and numbers that are observed in certain differentiating cells suggest further that the enzyme complements and metabolic roles of microbodies might change during cellular differentiation. If so, microbodies could be the functional equivalent of both microbodies and lysosomes of animal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnott, H. J., and K. M. Smith: Flectron microscopy of virus-infected sunflower leaves. J. Ultrastruct. Res. 19, 173–195 (1967).

    Google Scholar 

  • Avers, C. J.: Fine structure of Phleum root meristem cells. I. Mitochondria. Amer. J. Bot. 49, 996–1003 (1962).

    Google Scholar 

  • Balz, H. P.: Intrazelluläre Lokalisation und Funktion von hydrolytischen Enzymen bei Tabak. Planta (Berl.) 70, 207–236 (1966).

    Google Scholar 

  • Bonnett, H. T., and E. H. Newcomb: Polyribosomes and cisternal accumulations in root cells of radish. J. Cell Biol. 27, 423–432 (1965).

    Google Scholar 

  • Bouck, G. B.: Fine structure and organelle associations in brown algae. J. Cell Biol. 26, 523–537 (1965).

    Google Scholar 

  • —, and J. Cronshaw: The fine structure of differentiating sieve tube elements. J. Cell Biol. 25, 79–96 (1965).

    Google Scholar 

  • Cronshaw, J.: Crystal containing bodies of plant cells. Protoplasma (Wien) 59, 318–325 (1964).

    Google Scholar 

  • —, and G. B. Bouck: The fine structure of differentiating xylem elements. J. Cell Biol. 24, 415–431 (1965).

    Google Scholar 

  • Daems, W. T.: The fine structure of mouse-liver microbodies. J. Microscopie 5, 295–304 (1966).

    Google Scholar 

  • Duve, C. de, and P. Baudhuin: Peroxisomes (Microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).

    Google Scholar 

  • —, and R. Wattiaux: Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).

    Google Scholar 

  • Essner, E.: Endoplasmic reticulum and the origin of microbodies in fetal mouse liver. Lab. Invest. 17, 71–87 (1967).

    Google Scholar 

  • Frey-Wyssling, A., E. Grieshaber, and K. Mühlethaler: Origin of spherosomes in plant cells. J. Ultrastruct. Res. 8, 506–516 (1963).

    Google Scholar 

  • Gahan, P. B.: Histochemical evidence for the presence of lysosome-like particles in root meristem cells of Vicia faba. J. exp. Bot. 16, 350–355 (1965).

    Google Scholar 

  • —, and A. J. Maple: The behavior of lysosome-like particles during cell differentiation. J. exp. Bot. 17, 151–155 (1966).

    Google Scholar 

  • Gerola, F. M., and M. Bassi: Sui cristalloidi proteici delle cellule vegetali. Caryologia 17, 399–407 (1964).

    Google Scholar 

  • Harrington, J. F., and A. M. Altschul: Lysosome-like behavior in germinating onion seeds. (Abstr.) Fed. Proc. 22, 475 (1963).

    Google Scholar 

  • Holcomb, G. E., A. C. Hildebrandt, and R. F. Evert: Staining and acid phosphatase reactions of spherosomes in plant tissue culture cells. Amer. J. Bot. 54, 1204–1209 (1967).

    Google Scholar 

  • Hruban, Z., H. Swift, and R. W. Wissler: Alterations in the fine structure of hepatocytes produced by β-3-thienylalanine. J. Ultrastruct. Res. 8, 236–250 (1963).

    Google Scholar 

  • Jacks, T. J., L. Y. Yatsu, and A. M. Altschul: Isolation and characterization of peanut spherosomes. Plant Physiol. 42, 585–597 (1967).

    Google Scholar 

  • Jensen, T. E., and J. G. Valdovinos: Fine structure of abscission zones. I. Abscission zones of the pedicels of tobacco and tomato flowers at anthesis. Planta (Berl.) 77, 298–318 (1967).

    Google Scholar 

  • Kolehmainen, L., H. Zech, and D. von Wettstein: The structure of cells during tobacco mosaic virus reproduction. II. Mesophyll cells containing virus crystals. J. Cell Biol. 25, 77–98 (1965).

    Google Scholar 

  • Manton, I.: Observations on phragmosomes. J. exp. Bot. 12, 108–113 (1961).

    Google Scholar 

  • Marinos, N. G.: Comments on the nature of a crystal-containing body in plant cells. Protoplasma (Wien) 60, 31–33 (1965).

    Google Scholar 

  • Matile, P., J. P. Balz, E. Semadeni, and M. Jost: Isolation of spherosomes with lysosome characteristics from seedlings. Z. Naturforsch. 20b, 693–698 (1965).

    Google Scholar 

  • Mollenhauer, H. H.: Plastic embedding mixtures for use in electron microscopy. Stain Technol. 39, 111–114 (1964).

    Google Scholar 

  • —, D. J. Morré, and A. G. Kelley: The widespread occurrence of plant cytosomes resembling animal microbodies. Protoplasma (Wien) 62, 44–52 (1966).

    Google Scholar 

  • Novikoff, A. B., and W., Shin: The endoplasmic reticulum in the Golgi zone and its relation to microbodies, Golgi apparatus and autophagic vacuoles in rat liver cells. J. Microscopie 3, 187–206 (1964).

    Google Scholar 

  • O'Brien, T. P., and K. V. Thimann: Observations on the fine structure of the oat coleoptile. II. The parenchyma cells of the apex. Protoplasma (Wien) 63, 417–442 (1967).

    Google Scholar 

  • Olszewska, M. J., et B. Gabara: Recherches cytochimiques sur la présence de certaines hydrolases au cours de la cytocinèse chez les plantes supérieures. Protoplasma (Wien) 59, 164–179 (1964).

    Google Scholar 

  • Petzold, H.: Kristalloide Einschlüsse in Zytoplasma pflanzlicher Zellen. Protoplasma (Wien) 64, 120–133 (1967).

    Google Scholar 

  • Plesnicar, M., W. D. Bonner, Jr., and B. T. Storey: Peroxidase associated with higher plant mitochondria. Plant Physiol. 42, 366–370 (1967).

    Google Scholar 

  • Porter, K. R., and J. B. Caulfield: The formation of the cell plate during cytokinesis in Allium cepa L. Proc. IVth Internat. Conf. Electron Microscopy (Berlin) 2, 503–509 (1958).

    Google Scholar 

  • —, and R. D. Machado: Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J. biophys. biochem. Cytol. 7, 167–180 (1960).

    Google Scholar 

  • Poux, N.: Ultrastructural localization of aryl sulfatase activity in plant meristematic cells. J. Histochem. Cytochem. 14, 932–933 (1966).

    Google Scholar 

  • Price, W. C.: Flexulous rods in phloem cells of line plants infected with citrus tristeza virus. Virology 29, 285–294 (1966).

    Google Scholar 

  • Rasch, E. M., C. Kanjiraparamban, and W. F. Millington: Histochemical localization of acid phosphatases in differentiating and necrotic plant cells. J. Cell Biol. 27, 142 A (1965).

    Google Scholar 

  • Rhodin, J.: Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Stockholm: A. B. Godvie 1954.

    Google Scholar 

  • Schnepf, E.: Zur Cytologie und Physiologie der pflanzlichen Drüsen. IV. Licht-und elektronenmikroskopische Untersuchungen an Septalnektarien. Protoplasma (Wien) 58, 137–171 (1964).

    Google Scholar 

  • Semadeni, E. G.: Enzymatische charakterisierung der Lysosomenäquivalente (Sphärosomen) von Maiskeimlingen. Planta (Berl.) 72, 91–118 (1967).

    Google Scholar 

  • Sievers, A.: Lysosomen-ähnliche Kompartimente in Pflanzenzellen. Naturwissenschaften 53, 334–335 (1966).

    Google Scholar 

  • —: Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara joetida. Protoplasma (Wien) 64, 225–253 (1967).

    Google Scholar 

  • Sorokin, H. P., and S. Sorokin: The spherosomes of Campanula persicifolia L. Protoplasma (Wien) 62, 216–236 (1966).

    Google Scholar 

  • Thornton, R. M., and K. V. Thimann: On a crystal-containing body in cells of the oat coleoptile. J. Cell Biol. 20, 345–350 (1964).

    Google Scholar 

  • Tolbert, N. E., A. Oeser, T. Kisaki, R. H. Hageman, and R. K. Yamazaki: Peroxisomes from leaves with enzymes related to glycolate metabolism. (Abstr.) Fed. Proc. 27, 344 (1968).

    Google Scholar 

  • Villiers, T. A.: Crystalloid structure in the microbodies of plant embryo cells. Life Sci. 6, 2151–2156 (1967).

    Google Scholar 

  • Walek-Czernecka, A.: Histochemical demonstration of some hydrolytic enzymes in the spherosomes of plant cells. Acta Soc. Bot. Polon. 34, 573–588 (1965).

    Google Scholar 

  • Walles, B.: Plastid structures of carotenoid-deficient mutants of sunflower (Helianthus annuus L.). I. The white mutant. Hereditas (Lund.) 53, 247–256 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NASA Predoctoral Trainee.

Public Health Service Postdoctoral Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederick, S.E., Newcomb, E.H., Vigil, E.L. et al. Fine-structural characterization of plant microbodies. Planta 81, 229–252 (1968). https://doi.org/10.1007/BF00391159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391159

Keywords

Navigation