Skip to main content
Log in

Fractal dimension of the grain boundary fracture in creep-fracture of cobalt-based heat resistant alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of grain boundary configuration and creep conditions on the fractal dimension of the grain boundary fracture (D f) were investigated using commercial cobalt-based heat resistant alloys, namely, HS-21 and L-605 alloys. Creep-rupture experiments were carried out under the initial creep stresses of 19.6–176 MPa in the temperature range from 1089–1422 K in air. The value of D f was larger in specimens with serrated grain boundaries than in those with straight grain boundaries in the HS-21 alloy under the same creep condition, and the difference in the value of D f between these specimens was large in the scale range of the analysis which was less than about one grain boundary length. However, there was almost no difference in the value of D f between the specimens with serrated grain boundaries and those with straight grain boundaries in the L-605 alloy, because there was no obvious difference in the microstructure between these specimens. The value of D f increased with decreasing creep stress in the scale range of the fractal analysis larger than about one grain boundary length in both HS-21 and L-605 alloys, while the stress dependence of D f was larger in the HS-21 alloy. The stress dependence of D f was explained by the stress dependence on the number of grain boundary microcracks linked to the fracture surface. The value of D f estimated in the scale range smaller than about one grain boundary length showed essentially no stress dependence in both L-605 and HS-21 alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot, “The Fractal Geometry of Nature,” translated by H. Hironaka (Nikkei Science, Tokyo, 1985), p. 25.

    Google Scholar 

  2. B. B. Mandelbrot, D. E. Passoja and A. J. Paullay, Nature, 308 (1984) 721.

    Article  CAS  Google Scholar 

  3. K. Banerji and E. E. Underwood, in Proc. 6th Conf. on Fracture, New Delhi, India, 1984, Advances in Fracture Research, eds S. R. Valluri, D. M. R. Taplin, P. Rama Rao, J. F. Knott, R. Dubey, (Pergamon Press, London, 1984), 1612 p. 1371.

    Google Scholar 

  4. E. E. Underwood and K. Banerji, Mater. Sci. Eng. 80 (1986), 1.

    Article  Google Scholar 

  5. E. Hornbogen, Z, Metallkd. 78 (1987), 622.

    CAS  Google Scholar 

  6. Idem. Int. Mater. Rev. 34 (1989) 277.

    Article  Google Scholar 

  7. R. H. Dauskardt, F. Haubensak and R. O. Ritchie, Acta Metall. 38 (1990) 142.

    Google Scholar 

  8. M. Tanaka and H. Iizuka, Z. Metallkd. 82 (1991) 442.

    CAS  Google Scholar 

  9. M. Tanaka, J. Mater. Sci. 27 (1992) 4717.

    Article  CAS  Google Scholar 

  10. Idem. Ibid. 28 (1993) 5753.

    Article  CAS  Google Scholar 

  11. Idem. Z. Metallkd. 84 (1993) 697.

    CAS  Google Scholar 

  12. H. Takayasu, “Fractals in the Physical Sciences,” (Manchester University Press, Manchester, 1990), p. 6.

    Google Scholar 

  13. S. Ishimura and S. Ishimura, “Fractal Mathematics,” (Tokyo Tosho Co., Tokyo, 1990), p. 246.

    Google Scholar 

  14. C. S. Pande, L. E. Richards, N. Louat, B. D. Dempsey and A. J. Schwoeble, Acta Metall. 35 (1987) 1633.

    Article  CAS  Google Scholar 

  15. K. Banerji, Metall. Trans. A, 19A (1988) 961.

    Article  CAS  Google Scholar 

  16. M. Tanaka, O. Miyagawa, T. Sakaki and D. Fujishiro, J. Iron Steel Inst. Japan 65 (1979) 939.

    Article  CAS  Google Scholar 

  17. M. Tanaka, H. Iizuka and F. Ashihara, J. Mater. Sci. 24 (1989) 1623.

    Article  CAS  Google Scholar 

  18. M. Tanaka, H. Iizuka and M. Tagami, ibid. 24 (1989) 2428.

    Google Scholar 

  19. M. Tanaka, O. Miyagawa, T. Sakaki, H. Iizuka and D. Fujishiro, Ibid. 23 (1988) 621.

    Article  CAS  Google Scholar 

  20. M. Tanaka, H. Iizuka and F. Ashihara, Ibid. 27 (1992) 2636.

    Article  CAS  Google Scholar 

  21. R. Ohtani and S. Nakayama, J. Mater. Sci. Japan 32 (1983) 635.

    Article  CAS  Google Scholar 

  22. A. M. Gokhale, W. J. Drury and S. Mishra, in ASTM STP1203, American Society for Testing and Materials, Philadelphia, (1993), p. 3.

    Google Scholar 

  23. W. J. Drury and A. M. Gokhale, ibid.in, p. 58.

    Google Scholar 

  24. M. F. Ashby, Acta Metall. 20 (1972) 887.

    Article  CAS  Google Scholar 

  25. M. F. Ashby, R. Raj and R. C. Gifkins, Scripta Metall. 4 (1970) 737.

    Article  Google Scholar 

  26. R. Raj and M. F. Ashby, Metall. Trans. 2 (1971) 1113.

    Article  Google Scholar 

  27. F. W. Crossman and M. F. Ashby, Acta Metall, 23 (1975) 425.

    Article  CAS  Google Scholar 

  28. F. Garofalo, “Fundamentals of Creep and Creep Rupture in Metals,” translated by M. Adachi, (Maruzen Book Co. Ltd., Tokyo, 1968). p. 124.

    Google Scholar 

  29. T. G. Langdon and R. B. Vastava, in ASTM STP 765, American Society for Testing and Materials, Philadelphia, (1982), p. 435.

    Google Scholar 

  30. M. Tanaka, H. Iizuka and F. Ashihara, J. Mater. Sci. 23 (1988) 3827.

    Article  CAS  Google Scholar 

  31. M. Tanaka and H. Iizuka Trans. ASME, J. Mater. Sci. Technol. 112 (1990), 353.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M. Fractal dimension of the grain boundary fracture in creep-fracture of cobalt-based heat resistant alloys. JOURNAL OF MATERIALS SCIENCE 31, 3513–3521 (1996). https://doi.org/10.1007/BF00360757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00360757

Keywords

Navigation