Skip to main content
Log in

Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We investigated the connectivity of high-energy random grain boundaries through fractal analyses of specimens with different grain boundary (GB) microstructures in BFe10-1-1 copper-nickel alloy. It was found that the profile of maximum random boundary network possesses a fractal nature and more than one fractal dimension can exist. The fraction of special boundaries and grain size homogeneity can play an important role on GB character distribution. Here, GB microstructures are combined with quantitative materials structure-property relationship models to predict intergranular corrosion properties. The experimental results are accurately consistent with the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie: Grain-boundary engineering markedly reduces susceptibility to intergran-ular hydrogen embrittlement in metallic materials. Acta Mater. 57, 4148 (2009).

    Article  CAS  Google Scholar 

  2. S. Tokita, H. Kokawa, Y.S. Sato, and H.T. Fujii: In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater. Charact 100, 365 (2017).

    Google Scholar 

  3. B. S. Kumar, B.S. Prasad, V. Kain, and J. Reddy: Methods for making alloy 600resistant to sensitization and intergranular corrosion. Corns. Sci. 70, 55 (2013).

    Article  Google Scholar 

  4. T.D. Burleigh and D.H. Waldeck: Effect of alloying on the resistance of Cu-10% Ni alloys to seawater impingement. Corrosion 55, 800 (1999).

    Article  CAS  Google Scholar 

  5. C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, and N. Wang: Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros. Sci. 53, 1880 (2011).

    Article  CAS  Google Scholar 

  6. T. Watanabe: An approach to grain boundary design for strong and ductile polycrystals. Res. Mech. 11, 47 (1984).

    CAS  Google Scholar 

  7. A.Y. Chen, W.F. Hu, D. Wang, Y.K. Zhu, P. Wang, J.H. Yang, X.Y. Wang, J. F. Gu, and J. Lu: Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure. Scr. Mater. 130, 264 (2017).

    Article  CAS  Google Scholar 

  8. K. Deepak, S. Mandal, C.N. Athreya, D-H Kim, B. de Boer, and V. Subramanya Sarma: Implication of grain boundary engineering on high temperature hot corrosion of alloy 617. Corros. Sci. 106, 293 (2016).

    Article  CAS  Google Scholar 

  9. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, and K. Sakai: Twin-induced grainboundary engineering for 316 austenitic stainless steel. Acta Mater. 54, 5179 (2006).

    Article  CAS  Google Scholar 

  10. A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, and U. Hofmann: Field studies of corrosion behaviour of copper alloys in natural seawater. Corros. Sci. 76, 453 (2013).

    Article  CAS  Google Scholar 

  11. A.L. Ma, S.L. Jiang, Y.G. Zheng, and W. Ke: Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: composition/structure and formation mechanism. Corros. Sci. 91, 245 (2015).

    Article  CAS  Google Scholar 

  12. O.O. Ekerenam, A. Ma, Y. Zheng, and W. Emori: Electrochemical behavior of three 90Cu-10Ni tubes from different manufacturers after immersion in 3.5% NaCI solution. J. Mater. Eng. Perform. 26, 1701 (2017).

    Article  CAS  Google Scholar 

  13. V. Randle: “Special” boundaries and grain boundary plane engineering. Scr. Mater. 54, 1011 (2006).

    Article  CAS  Google Scholar 

  14. G. Gottstein and L.S. Shvindlerman: Grain boundary junction engineering. Scr. Mater. 54, 1065 (2006).

    Article  CAS  Google Scholar 

  15. S. Kobayashi, T. Maruyama, S. Tsurekawa, and T. Watanabe: Grain boundary engineering based on fractal analysis for control of segregation-induced intergranular brittle fracture in polycrystalline nickel. Acta Mater. 60, 6200 (2012).

    Article  CAS  Google Scholar 

  16. S. Kobayashi, R. Kobayashi, and T. Watanabe: Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 102, 397 (2016).

    Article  CAS  Google Scholar 

  17. D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  18. T. Watanabe and Grain boundary engineering: Historical perspective and future prospects. J. Mater. Sci. 46, 4095 (2011).

    Article  CAS  Google Scholar 

  19. P. Fortier, W.A. Miller, and K.T. Aust: Effects of symmetry, texture and topology on triple junction character distribution in polycrystalline materials. Acta Metall. Mater. 43, 339 (1995).

    Article  CAS  Google Scholar 

  20. B.B. Mandelbrot, D.E. Passoja, and A.J. Paullay: Fractal character of fracture surfaces of metals. Nature 70, 721 (1984).

    Article  Google Scholar 

  21. S. Kobayashi, S. Tsurekawa, and T. Watanabe: A new approach to grain boundary engineering for nanocrystalline materials. Beilstein J. Nanotechnol. 7, 1829 (2016).

    Article  CAS  Google Scholar 

  22. B. Dubuc, J.F. Quiniou, C. Roques-Carmes, C. Tricot, and S.W. Zucker: Evaluating the fractal dimension of profiles. Phys. Rev. A 39, 1500 (1989).

    Article  CAS  Google Scholar 

  23. E. Charkaluk, M. Bigerelle, and A. Iost: Fractals and fracture. Eng. Fract Mech. 61, 119 (1998).

    Article  Google Scholar 

  24. D.B. Bober, J. Lind, R.P. Mulay, T.J. Rupert, and M. Kumar: The formation and characterization of large twin related domains. Acta Mater. 129, 500 (2017).

    Article  CAS  Google Scholar 

  25. C.A. Schuh, R.W. Minich, and M. Kumar: Connectivity and percolation in simulated grain-boundary networks. Philos. Mag. 83, 711 (2003).

    Article  CAS  Google Scholar 

  26. F. Cao, J. Wei, J. Dong, and W. Ke: The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution. Corros. Sci. 100, 365 (2015).

    Article  CAS  Google Scholar 

  27. V. Subramanian, P. Chandramohan, M.P. Srinivasan, S. Velmurugan, and S.V. Narasimhan: Corrosion of cupronickel alloy in permanganate under acidic condition. Corros. Sci. 49, 620 (2007).

    Article  CAS  Google Scholar 

  28. V. Randle, Y. Hu, and M. Coleman: Grain boundary reorientation in copper. J. Mater. Sci. 43, 3782 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Biao Wen for providing the image processing software for fractal analysis. This work was supported by the National Key Research and Development Program of China (No. 2016YFB0301400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingyu Feng or Zhigang Wang.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Feng, X., Song, C. et al. Quantification of grain boundary connectivity for predicting intergranular corrosion resistance in BFe10-1-1 copper-nickel alloy. MRS Communications 9, 251–257 (2019). https://doi.org/10.1557/mrc.2018.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.211

Navigation