Skip to main content
Log in

On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The peripheral retina and lamina ganglionaris of Musca domestica have been investigated electronmicroscopically.

Peripheral Retina

  1. 1.

    The four Semper cells of each ommatidium form thread-like processes which extend proximally through the retinula and end at a level just distal to the basement membrane.

  2. 2.

    Rhabdomeres No. 1–6 have a conical form, being approximately 2 μ in diameter at the distal ends and 1 μ at the proximal ends. The consequences of this special shape are, a) that the mean number of absorbed quanta per volume unit remains approximately constant throughout the length of the rhabdomeres and, b) that about half the amount of photopigment per rhabdomere compared with a cylindrical rhabdomere of 2 μ diameter is adequate in order to allow the same total absorption. In contrast to the above, rhabdomeres No. 7 and 8 have a diameter of about 1 μ throughout their length.

  3. 3.

    The spatial arrangement of the rhabdomeres in Musca domestica is of a definite rotationally asymmetrical pattern. This pattern is not universal in Dipterans as is witnessed by the rotationally symmetrical pattern found in a more primitive species, Wilhelmia equina (Simuliidae).

    The microvilli in the distal ends of Musca rhabdomeres are oriented in a specific manner, whereby their long axes are parallel in rhabdomeres No. 1 and 4, 2 and 5, and 3 and 6 respectively.

  4. 4.

    Pigment granules within retinula cells No. 1–6 migrate to the bases of the microtubules upon bright adaptation. No pigment migration is observed in retinula cells No. 7 and 8. Migration of particles has been previously proposed as a protective mechanism for rhabdomeres No. 1–6 during bright illumination.

Lamina Ganglionaris

  1. 1.

    Pour monopolar neuron somata have been found distal to each optical cartridge in the lamina. The four fibers of these neurons form a bundle and enter the crown of photoreceptor cell axon terminals. Two large diameter fibers which are derived from two type I somata form the central second order neurons, L1 and L2 in each cartridge. The two small diameter fibers, L3 and L4 withdraw between the photoreceptor axon terminals R5 and R6 to a point on the periphery of the cartridge where they remain throughout the lamina. L4 sends a short collateral back into the base of its parent cartridge.

  2. 2.

    Paired centrifugal fiber endings are located between receptor axon terminals on the periphery of each cartridge. In medial and proximal sections through the cartridges there is one pair of centrifugal endings per receptor axon terminal. The pair of centrifugal endings located between axon terminals No. 5 and 6 bifurcates distally so that L3 and L4 are surrounded by two pairs of centrifugal endings as they withdraw from the center of the cartridge.

  3. 3.

    The following cell contacts, which appear to be synaptic in nature, have been observed between various fibers within the cartridges and are characterized by the presence of a T-shaped synaptic ribbon and synaptic vesicles within the presynaptic fibers and occasionally by a membranous postsynaptic structure (see the Table and Pig. 33). Commonly, two postsynaptic fibers share one presynaptic site.

    The receptor axon terminals R1–6 provide synaptic inputs to L1 and L2 as well as to the centrifugal endings α, β. L3 receives an input from at least one of the receptor axons and from one centrifugal fiber. L4 receives an input from a centrifugal fiber and is possibly presynaptic to L1 and L2. The centrifugal fibers make synaptic contact with one another and are presynaptic to small unidentified fibers. Neurons L1 and L2 are also presynaptic to small fibers of unknown origin. Furthermore T-shaped ribbons have been observed within the centrifugal fibers as well as within the receptor axon terminals at points of contact with epithelial glial cells.

  4. 4.

    The epithelial glial cells are arranged in a strict and orderly fashion between the optical cartridges. Throughout most of the eye, each glial cell touches upon exactly three cartridges and each cartridge is surrounded by three cells. Exceptions to this rule occur within the equatorial and marginal regions of the eye.

    The distal surfaces of the epithelial cells are characterized by extensive outfoldings of the limiting membranes. The greater portion of the cytoplasm is filled with numerous mitochondria and infolded membranes.

  5. 5.

    The mirror image pattern inversion of the ommatidia at the equator in the peripheral retina is projected onto the lamina as witnessed by the location of fibers L3, L4 and R7, R8 in relation to the cartridges. This inversion can also be observed in the arrangement of the epithelial glial cells between the cartridges.

  6. 6.

    Whereas six retinula cell axon terminals are usually found in the cartridges a different situation exists in the equator region of the eye. In this region the cartridges contain seven to eight axon terminals of retinula cells No. 1–6. This agrees with the result that in the equator region seven to eight rhabdomeres No. 1–6 view one and the same point in the environment rather than the usual six rhabdomeres (Kirschfeld, 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, H. J.: Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z. Vererbungsl. 88, 333–373 (1957).

    Google Scholar 

  • Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    Google Scholar 

  • —: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970).

    Google Scholar 

  • Brammer, J. D.: The ultrastructure of the compound eye of a mosquito Aedes aegypti L. J. exp. Zool. 175, 181–195 (1970).

    Google Scholar 

  • Burton, P. R., Stockhammer, K. A.: Electron microscopic studies of the compound eye of the toadbug, Gelastocoris oculatus. J. Morph. 127, 233–258 (1969).

    Google Scholar 

  • Danilova, L. V., Rokhlenko, K. D., Bodryagina, A. V.: Electron microscopic study on the structure of septate and comb desmosomes. Z. Zellforsch. 100, 101–117 (1969).

    Google Scholar 

  • Danneel, R., Zeutzschel, B.: Über den Feinbau der Retinula bei Drosophila melanogaster. Z. Naturforsch. 12b, 580–583 (1957).

    Google Scholar 

  • De Lorenzo, A. J. D., Brzin, M., Dettbarn, W. D.: Fine structure and organization of nerve fibers and giant axons in Homarus americanus. J. Ultrastruct. Res. 24, 367–384 (1968).

    Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).

    Google Scholar 

  • Fahrenbach, W. H.: The morphology of the eyes of Limulus. I. Cornea and epidermis of the compound eye. Z. Zellforsch. 87, 278–291 (1968).

    Google Scholar 

  • Follenius, E.: Organisation scalariforme du réticulum endoplasmique dans certains processus nerveux de l'hypothalamus de Gasterosteus aculeatus L. Z. Zellforsch. 106, 61–68 (1970).

    Google Scholar 

  • Fuge, H.: Die Pigmentbildung im Auge von Drosophila melanogaster und ihre Beeinflussung durch den white+-Locus. Z. Zellforsch. 83, 468–507 (1967).

    Google Scholar 

  • Galambos, R.: A glial-neural theory of brain function. Proc. nat. Acad. Sci. (Wash.) 47, 129–136 (1961).

    Google Scholar 

  • Glauert, A. M., Glauert, R. H.: Araldite as an embedding medium for electron microscopy. J. biophys. biochem. Cytol. 4, 191–194 (1958).

    Google Scholar 

  • Goldsmith, T. H.: The visual system of insects. In: The physiology of insecta (M. Rockstein, ed.). New York: Academic Press 1964.

    Google Scholar 

  • —, Philpott, D. E.: The microstructure of the compound eyes of insects. J. biophys. biochem. Cytol. 3, 429–440 (1957).

    Google Scholar 

  • Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. Göttingen: Vandenhoeck und Ruprecht 1879.

    Google Scholar 

  • Horridge, G. A.: The retina of the locust. In: The functional organization of the compound eye (C. G. Bernhard, ed.). London: Pergamon Press 1966.

    Google Scholar 

  • —, Meinertzhagen, I. A.: The accuracy of the patterns of connexions of the first- and secondorder neurons of the visual system of Calliphora. Proc. roy. Soc. B 175, 69–82 (1970).

    Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    Google Scholar 

  • —: Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Processing of optical data by organisms and by machines. New York: Academic Press 1969.

    Google Scholar 

  • —, Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).

    Google Scholar 

  • —: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    Google Scholar 

  • —, Reichardt, W.: Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. 25b, 228 (1970).

    Google Scholar 

  • Lamparter, H. E., Steiger, U., Sandri, C., Akert, K.: Zum Feinbau der Synapsen im Zentralnervensystem der Insekten. Z. Zellforsch. 99, 435–442 (1969).

    Google Scholar 

  • Loewenstein, W. R., Kanno, Y.: Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biol. 22, 565–586 (1964).

    Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).

    Google Scholar 

  • Meyer, G. F.: Versuch einer Darstellung von Neurofibrillen im zentralen Nervensystem verschiedener Insekten. Zool. Jb. Anat. 71, 413–425 (1951).

    Google Scholar 

  • Miller, R. F., Dowling, J. E.: Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).

    Google Scholar 

  • Osborne, M. P.: The fine structure of neuromuscular junctions in the segmental muscles of the blowfly larva. J. Insect Physiol. 13, 827–833 (1967).

    Google Scholar 

  • Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).

    Google Scholar 

  • Pease, D. C.: Histological techniques for electron microscopy, second edition. New York: Academic Press 1964.

    Google Scholar 

  • Peracchia, C.: A system of parallel septa in crayfish nerve fibers. J. Cell Biol. 44, 125–133 (1970).

    Google Scholar 

  • Rebhun, L. I.: Structural aspects of saltatory particle movement. J. gen. Physiol. 50, 223–239 (1967).

    Google Scholar 

  • Reichardt, W., ed.: Processing of optical data by organisms and by machines. New York: Academic Press 1969.

    Google Scholar 

  • Schneider, L., Langer, H.: Die Feinstruktur des Überganges zwischen Kristallkegel und Rhabdomeren im Facettenauge von Calliphora. Z. Naturforsch. 21b, 196–197 (1966).

    Google Scholar 

  • Seitz, G.: Nachweis einer Pupillenreaktion im Auge der Schmeißfliege. Z. vergl. Physiol. 69, 169–185 (1970).

    Google Scholar 

  • Smith, D. S.: The organization of the insect neuropil. In: Invertebrate nervous systems (C. A. G. Wiersma, ed.). Chicago: Chicago Univ. Press 1967.

    Google Scholar 

  • Steiger, U.: Über den Feinbau des Neuropils im Corpus pendunculatum der Waldameise. Z. Zellforsch. 81, 511–536 (1967).

    Google Scholar 

  • Strausfeld, N. J.: Golgi studies on insects. Part II The optic lobes of Diptera. Phil. Trans. B 258, 135–223 (1970).

    Google Scholar 

  • —, Braitenberg, V.: The compound eye of the fly (Musca domestica): Connections between the cartridges of the lamina ganglionaris. Z. vergl. Physiol. 70, 95–104 (1970).

    Google Scholar 

  • Thurm, U.: Untersuchungen zur funktioneilen Organisation sensorischer Zellverbände. Verh. dtsch. zool. Ges. (im Druck) (1970).

  • Trujillo-Cenóz, O.: The fine structure of a special type of nerve fiber found in the ganglia of Armadillidium vulgare (Crustacea-Isopoda). J. biophys. biochem. Cytol. 7, 185–186 (1960).

    Google Scholar 

  • —: Some aspects of the structural organization of the intermediate retina of Dipterans. J. Ultrastruct. Res. 13, 1–33 (1965a).

    Google Scholar 

  • —: Some aspects of the structural organization of the arthropod eye. Cold Spr. Harb. Symp. quant. Biol. 30, 371–382 (1965b).

    Google Scholar 

  • —: Some aspects of the structural organization of the medulla in muscoid flies. J. Ultrastruct. Res. 27, 533–553 (1969).

    Google Scholar 

  • —, Melamed, J.: On the fine structure of the photoreceptor-second optical neuron synapse in the insect retina. Z. Zellforsch. 59, 71–77 (1963).

    Google Scholar 

  • —: Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: The functional organization of the compound eye (C. G. Bernhard, ed.). London: Pergamon Press 1966a.

    Google Scholar 

  • —: Compound eye of dipterans: Anatomical basis for integration — an electron microscope study. J. Ultrastruct. Res. 16, 395–398 (1966b).

    Google Scholar 

  • Vigier, P.: Sur l'existence réelle et le rôle des appendices piriformes des neurons. Le neurone périoptique des Diptères. C. R. Soc. Biol. (Paris) 64, 959–961 (1908).

    Google Scholar 

  • Wachmann, E.: Zum Feinbau der Ommatidien von Pteronemobius heydeni (Fisch.) (Orthoptera, Gryllidae). Z. Zellforsch. 108, 46–58 (1970).

    Google Scholar 

  • Waddington, C. H., Perry, M. M.: The ultra-structure of the developing eye of Drosophila. Proc. roy. Soc. B 153, 155–178 (1960).

    Google Scholar 

  • —: Inter-retinular fibres in the eyes of Drosophila. J. Ins. Physiol. 9, 475–478 (1963).

    Google Scholar 

  • Wenk, P.: Anatomie des Kopfes von Wilhelmia equina. L. ♀ (Simuliidae syn. Melusinidae, Diptera). Zool. Jb. Abt. Anat. u. Ontog. 80, 81–134 (1962).

    Google Scholar 

  • Wolken, J. J., Capenos, J., Turano, A.: Photoreceptor structures. J. biophys. biochem. Cytol. 3, 441–447 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dissertation des Fachbereiches Biologie der Eberhard-Karls-Universität zu Tübingen, 1971.

I am most indebted to Dr. K. Kirschfeld, both for drawing my attention to these problems and for his invaluable advice and support throughout this investigation. I also wish to express my gratitude to Dr. V. Braitenberg, Prof. Dr. W. Reichardt and Dr. N. Strausfeld for numerous discussions; Mr. E. Freiberg for preparation of the drawings; Miss I. Geiss for typing the manuscript; and Miss B. Weismann for photographic assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschek, G.B. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica . Z. Zellforsch. 118, 369–409 (1971). https://doi.org/10.1007/BF00331193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331193

Key-Words

Navigation