Skip to main content
Log in

The efferent connections of the lateral septal nucleus in the guinea pig: projections to the diencephalon and brainstem

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine β-hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blume HW, Pittman QJ, Lafontaine S, Renaud LP (1982) Lateral septum — medial hypothalamic connections: an electrophysiological study in the rat. Neuroscience 7:2783–2792

    Google Scholar 

  • Caldwell JD, Jirikowski GF, Greer ER, Pedersen CA (1989) Medial preoptic area oxytocin and female sexual receptivity. Behav Neurosci 103:655–662

    Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16

    Google Scholar 

  • Cirino M, Renaud LP (1985) Influence of the lateral septum and amygdala stimulation on the excitability of the hypothalamic supraoptic neurons. An electrophysiological study in the rat. Brain Res 326:357–361

    Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262

    Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274:60–76

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, Bd IV7. Springer, Göttingen Heidelberg Berlin

    Google Scholar 

  • Drago F, Pedersen CA, Caldwell JD, Prange AJ Jr (1986) Oxytocin enhances novelty-induced grooming behavior in the rat. Brain Res 368:287–295

    Google Scholar 

  • Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1989a) Distribution of neurohypophysial peptides in the guinea pig brain. I. An immunocytochemical study of the vasopressin-related glycopeptide. Brain Res 496:45–65

    Google Scholar 

  • Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1989a) Distribution of neurohypophysial peptides in the guinea pig brain. II. An immunocytochemical study of oxytocin. Brain Res 496:66–81

    Google Scholar 

  • Fahrbach SE, Morrell JI, Pfaff DW (1989) Studies of ventromedial hypothalamic afferents in the rat using three methods of HRP application. Exp Brain Res 77:221–233

    Google Scholar 

  • Ferris CF, Gold L, DeVries GJ, Potegal M (1990) Evidence for a functional and anatomical relationship between the lateral septum and the hypothalamus in the control of flank marking behavior in golden hamsters. J Comp Neurol 293:476–485

    Google Scholar 

  • Freund-Mercier M-J, Moos F, Poulain DA, Richard P, Rodriguez F, Theodosis DT, Vincent J-D (1988) Role of central oxytocin in the control of the milk ejection reflex. Brain Res Bull 20:737–741

    Google Scholar 

  • Gaines WL (1915) A contribution to the physiology of lactation. Am J Physiol 38:285–312

    Google Scholar 

  • Garris DR (1979) Direct septo-hypothalamic projections in the rat. Neurosci Lett 13:82–90

    Google Scholar 

  • Gray TS, Carney ME, Magnuson DJ (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50:433–446

    Google Scholar 

  • Groenewegen HJ, Wouterlood FG (1990) Light and electron microscopic tracing of neuronal connections with Phaseolus vulgaris-leucoagglutinin (PHA-L), and combinations with other neuroanatomical techniques. In: Björklund A, Hökfelt T, Wouterlood FG, Van den Pol AN (eds) Handbook of chemical neuroanatomy, vol 8. Analysis of neuronal microcircuits and synaptic interactions. Elsevier, Amsterdam, pp 47–124

    Google Scholar 

  • Harris MC (1978) The concept of the neuroendocrine reflex. In: Vincent JD, Cordon C (eds) Cell biology of hypothalamic neurosecretion. CNRS, Paris, pp 47–61

    Google Scholar 

  • Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

    Google Scholar 

  • Iijima K, Ogawa T (1981) An HRP study on the distribution of all nuclei innervating the supraoptic nucleus in the rat brain. Acta Histochem (Jena) 69:274–295

    Google Scholar 

  • Insel TR, Harbaugh CR (1989) Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45:1033–1041

    Google Scholar 

  • Jennes L, Stumpf WE, Kalivas PW (1982) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210:211–224

    Google Scholar 

  • Jhamandas JH, Lind RW, Renaud LP (1989a) Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res 487:52–61

    Google Scholar 

  • Jhamandas JH, Raby W, Rogers J, Buijs RM, Renaud LP (1989b) Diagonal band projection towards the hypothalamic supraoptic nucleus: light and electron microscopic observations in the rat. J Comp Neurol 282:15–23

    Google Scholar 

  • Jirikowski GF, Caldwell JD, Pilgrim C, Stumpf WE, Pederson CA (1989) Changes in immunostaining for oxytocin in the forebrain of the female rat during late pregnancy, parturition and early lactation. Cell Tissue Res 256:411–417

    Google Scholar 

  • Johnson RF, Smale L, Moore RY, Morin LP (1989) Paraventricular nucleus efferents mediating photoperiodism in male golden hamsters. Neurosci Lett 98:85–90

    Google Scholar 

  • Kiss JZ, Palkovits M, Záborszky L, Tribollet E, Szabo D, Makara GB (1983) Quantitative histological studies on the hypothalamic paraventricular nucleus in rats. II. Number of local and certain afferent nerve terminals. Brain Res 265:11–20

    Google Scholar 

  • Kita H, Oomura Y (1982) An HRP study of the afferent connections to rat medial hypothalamic region. Brain Res Bull 8:53–62

    Google Scholar 

  • Koranji L, Yamanouchi K, Arai Y (1988) Neural transection between preoptic area and septum inhibits maternal behavior in female and male rats. Neurosci Res 6:167–173

    Google Scholar 

  • Leibowitz SF, Sladek C, Spencer L, Tempel D (1988) Neuropeptide Y, epinephrine and norepinephrine in the paraventricular nucleus: stimulation of feeding and the release of corticosterone, vasopressin and glucose. Brain Res Bull 21:905–912

    Google Scholar 

  • Lindvall O, Stenevi U (1978) Dopamine and noradrenaline neurons projecting to the septal area in the rat. Cell Tissue Res 190:383–407

    Google Scholar 

  • Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Karger, Basel New York

    Google Scholar 

  • Marcinkiewicz M, Morcos R, Chretien M (1989) CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-gold complex in the rat. J Comp Neurol 289:11–35

    Google Scholar 

  • Mason WT, Ho YW, Eckstein F, Hatton GI (1983) Mapping of cholinergic neurons associated with rat supraoptic nucleus: combined immunocytochemical and histochemical identification. Brain Res Bull 11:617–626

    Google Scholar 

  • Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing anterograde and retrograde transport methods. Brain Res 119:1–20

    Google Scholar 

  • Meister B, Cortes R, Villar MJ, Scalling M, Hökfelt T (1990) Peptides and transmitter enzymes in hypothalamic magnocellular neuron after administration of hyperosmotic stimuli: comparison between messenger RNA and peptide/protein levels. Cell Tissue Res 260:279–297

    Google Scholar 

  • Merker G, Blähser S, Zeisberger E (1980) Reactivity pattern of vasopressin-containing neurons and its relation to the antipyretic reaction in the pregnant guinea pig. Cell Tissue Res 212:47–61

    Google Scholar 

  • Meyer DK, Brownstein MJ (1980) Effect of surgical deafferentation of the supraoptic nucleus on its choline acetyltransferase content. Brain Res 193:566–569

    Google Scholar 

  • Meyer DK, Oertel WH, Brownstein MJ (1980) Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res 200:165–168

    Google Scholar 

  • Miselis RR (1981) The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res 230:1–23

    Google Scholar 

  • Neumann I, Landgraf R (1989) Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling. J Neuroendocrinol 1:305–308

    Google Scholar 

  • Ohtake M, Sakaguchi T (1990) Gastrin-17 injected into the hypothalamic paraventricular nucleus can induce gastric acid secretion in rats. Brain Res 508:325–328

    Google Scholar 

  • Oldfield BJ, Silverman A-J (1985) A light microscopic HRP study of limbic projections to the vasopressin-containing nuclear groups of the hypothalamus. Brain Res Bull 14:143–157

    Google Scholar 

  • Onaka T, Yagi K (1988) Bimodal effects of noxious stimuli on vasopressin secretion in rats. Neuroscience Res 6:141–148

    Google Scholar 

  • Oorjitham EG, Godfrey DA, Ross CD, Dunn JD (1989) Effect of septal ablation on choline acetyltransferase in the paraventricular nucleus. Brain Res Bull 22:277–282

    Google Scholar 

  • Pickard GE (1982) The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection. J Comp Neurol 211:65–83

    Google Scholar 

  • Poulain DA, Lebrun CJ, Vincent JD (1981) Electrophysiological evidence for connections between septal neurones and the supraoptic nucleus of the hypothalamus of the rat. Exp Brain Res 42:260–268

    Google Scholar 

  • Pratt NC, Lisk RD (1989) Role of the hypothalamic paraventricular nucleus in mediating stress-related litter deficits in the golden hamster. J Neuroendocrinol 1:407–413

    Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol 218:121–144

    Google Scholar 

  • Sherman TG, McKelvey JF, Watson SJ (1986) Vasopressin mRNA regulation in individual hypothalamic nuclei: a northern and in situ hybridization analysis. J Neurosci 6:1685–1694

    Google Scholar 

  • Shinoda K, Tohyama M (1987) Analysis of the habenulopetal enkephalinergic system in the rat brain: an immunohistochemical study. J Comp Neurol 255:483–496

    Google Scholar 

  • Silverman A-J, Zimmerman EA (1983) Magnocellular neurosecretory system. Annu Rev Neurosci 6:357–380

    Google Scholar 

  • Silverman A-J, Hoffman DL, Zimmerman EA (1981) The descending afferent connections of the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 6:47–61

    Google Scholar 

  • Sladek CD, Armstrong WD (1987) Effects of neurotransmitters and neuropeptides on vasopressin release. In: Gash DM, Boer GJ (eds) Vasopressin: principles and properties. Plenum Press, New York, pp 287–333

    Google Scholar 

  • Sofroniew MV (1985) Vasopressin, oxytocin and their related neurophysins. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4. GABA and neuropeptides in the CNS, part I. Elsevier, Amsterdam, pp 93–165

    Google Scholar 

  • Sofroniew MV, Weindl A, Schinko I, Wetzstein R (1979) The distribution of vasopressin-, oxytocin-, and neurophysin-producing neurons in the guinea pig brain. Cell Tissue Res 196:376–384

    Google Scholar 

  • Staiger JF, Nürnberger F (1989) Pattern of afferents to the lateral septum in the guinea pig. Cell Tissue Res 257:471–490

    Google Scholar 

  • Staiger JF, Wouterlood FG (1990) Efferent projections from the lateral septal nucleus to the anterior hypothalamus in the rat: a study combining Phaseolus vulgaris-leucoagglutinin tracing with vasopressin immunocytochemistry. Cell Tissue Res 261:17–23

    Google Scholar 

  • Staines WA, Yamamoto T, Dewar KM, Daddona PE, Geiger JD, Nagy JI (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455:72–87

    Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat — cell bodies and terminals. Neuroscience 6:557–618

    Google Scholar 

  • Swanson LW (1987) The hypothalamus. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5. Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 125–277

    Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region. J Comp Neurol 186:621–656

    Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Google Scholar 

  • Theodosis DT, Mason WT (1988) Choline acetyltransferase immunocytochemical staining of the rat supraoptic nucleus and its surroundings. Cell Tissue Res 254:119–124

    Google Scholar 

  • Theodosis DT, Poulain DA (1989) Neuronal-glial and synaptic plasticity in the adult rat paraventricular nucleus. Brain Res 484:361–366

    Google Scholar 

  • Theodosis DT, Paut L, Tappaz ML (1986) Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience 19:207–222

    Google Scholar 

  • Tribollet E, Dreifuss JJ (1981) Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience 6:1315–1328

    Google Scholar 

  • Tribollet E, Armstrong WE, Dubois-Dauphin M, Dreifuss JJ (1985) Extra-hypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques. Neuroscience 15:135–148

    Google Scholar 

  • Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LMG (1982) The medial forebrain bundle of the rat. II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108

    Google Scholar 

  • Vincent JD, Hayward JN (1970) Activity of single cells in the osmoreceptor-supraoptic nuclear complex in the hypothalamus of the waking rhesus monkey. Brain Res 23:105–108

    Google Scholar 

  • Walaas I, Fonnum F (1980) The distribution and origin of glutamate decarboxylase and choline acetyltransferase in the ventral pallidum and other basal forebrain regions. Brain Res 177:325–336

    Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus. I. Studies using anterograde transport of Phaseolus vulgaris-leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Google Scholar 

  • Whitnall MH (1989) Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology 50:702–707

    Google Scholar 

  • Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L-filled somate, dendrites, axons and axon terminals. Brain Res 326:188–191

    Google Scholar 

  • Wouterlood FG, Bol JGJM, Steinbusch HWM (1987) Double-label immunocytochemistry: Combination of anterograde neuroanatomical tracing with Phaseolus vulgaris-leucoagglutinin and enzyme immunocytochemistry of target neurons. J Histochem Cytochem 35:817–823

    Google Scholar 

  • Yamashita H, Inenaga K, Dyball REJ (1988) Thermal, osmotic and chemical modulation of neural activity in the paraventricular nucleus: in vitro studies. Brain Res Bull 20:825–829

    Google Scholar 

  • Záborszky L, Cullinan WE (1989) Hypothalamic axons terminate on forebrain cholinergic neurons: an ultrastructural doublelabeling study using PHA-L tracing and CHAT immunocytochemistry. Brain Res 479:177–184

    Google Scholar 

  • Záborszky L, Léranth C, Makara GB, Palkovits M (1975) Quantitative studies on the supraoptic nucleus in the rat. II. Afferent fiber connections. Exp Brain Res 22:525–540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staiger, J.F., Nürnberger, F. The efferent connections of the lateral septal nucleus in the guinea pig: projections to the diencephalon and brainstem. Cell Tissue Res 264, 391–413 (1991). https://doi.org/10.1007/BF00319031

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319031

Key words

Navigation