Skip to main content
Log in

Organization of the Pallidal Projections of the Rostromedial Tegmental Nucleus of the Dog Brain

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The organization of the projections of the rostromedial tegmental nucleus (RMTN) to functionally diverse nuclei of the pallidum in the dog brain (n = 13) was studied by retrograde and anterograde transport of horseradish peroxidase. These studies showed that fibers formed by neurons in the limbic medial segments of the rostral and caudal divisions of the RMTN are directed to the limbic parts of the pallidum – the ventral zone of the globus pallidus and the ventral pallidum. Reciprocal connections were observed between the ventral pallidum and the medial part of the rostral RMTN. These data identify the potential for segregated conduction of limbic information via these projection systems. However, most pallidal structures showed convergence of projection fibers arising from neurons in functionally diverse parts of the RMTN. Thus, projection fibers from neurons in the motor lateral and limbic medial parts of the RMTN are directed to the limbic ventral segment of the globus pallidus and the entopeduncular nucleus, which are innervated by fibers formed by neurons in functionally diverse structures. The possible pathways for the conduction of functionally different information and its integration in the projection systems studied here are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gorbachevskaya, “Organization of the projections of the rostromedial tegmental nucleus to the striatum in the dog brain,” Morfologiya, 143, No. 3, 22–26 (2013).

    CAS  Google Scholar 

  2. A. I. Gorbachevskaya and O. G. Chivileva, “Morphological analysis of information conduction pathways in the basal ganglia of mammals,” Usp. Fiziol. Nauk., 34, No. 2, 46–63 (2003).

    Google Scholar 

  3. R. Bourdy and M. Barrot, “A new control center for dopaminergic systems: pulling the VTA by the tail,” Trends Neurosc., 35, No. 11, 681–690 (2012).

    Article  CAS  Google Scholar 

  4. S. Dua-Sharma, K. N. Sharma, and H. L. Jacobs, The Canine Brain in Stereotaxic Coordinates, MIT Press Cambridge, MA, London (1970).

    Google Scholar 

  5. S. Geisler and D. S. Zahm, “Afferents of the ventral tegmental area in the rat – anatomical substratum for integrative functions,” J. Comp. Neurol., 490, No. 3, 270–294 (2005).

    Article  PubMed  Google Scholar 

  6. S. N. Haber, “Functional anatomy and physiology of the basal ganglia: non-motor functions,” in: Current Clinical Neurology: Deep Brain Stimulation in Neurological and Psychiatric Disorders, Humana Press, Totowa, NJ (2008), pp. 33–62.

  7. G. Holstege, “The mesopontine rostromedial tegmental nucleus and the emotional motor system: role in basic survival behavior,” J. Comp. Neurol., 513, No. 6, 559–565 (2009).

    Article  PubMed  Google Scholar 

  8. S. Hong, T. C. Jhou, M. K. Smith, et al., “Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates,” J. Neurosci., 31, No. 32, 11,457–11,471 (2012).

    Article  Google Scholar 

  9. S. Jbabdi, S. N. Sotiropoulos, and T. E. Behrens, “The topographic connectome,” Curr. Opin. Neurobiol., 23, No. 2, 207–215 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. T. C. Jhou, H. L. Fields, M. G. Baxter, et al., “The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses,” Neuron, 61, No. 3, 786–800 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. T. C. Jhou, S. Geisler, M. Marinelli, and B. A. Degarmo, “The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta,” J. Comp. Neurol., 513, No. 6, 566–596 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  12. J. Kaufl ing, P. Vienante, S. A. Pawlowski, and M.-J. Freund-Mercier, “Afferents to the GABAergic tail of the ventral tegmental area in the rat,” J. Comp. Neurol., 513, No. 6, 597–621 (2009).

    Article  Google Scholar 

  13. H. N. Lavezzi and D. S. Zahm, “The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system,” Basal Ganglia, 1, No. 4, 191–200 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  14. M. M. Mesulam, “Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem., 26, No. 2, 106–117 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. J. A. Obeso, M. C. Rodriguez-Oroz, F. J. Blesa, and J. Guridi, “The globus pallidus pars externa and Parkinson’s disease. Ready for prime time?” Exp. Neurol., 202, No. 1, 1–7 (2006).

    Article  PubMed  Google Scholar 

  16. O. Sporns, “Network attributes for segregation and integration in the human brain,” Curr. Opin. Neurobiol., 23, No. 2, 162–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. T. Wichman and M. R. DeLong, “Deep-brain stimulation for basal ganglia disorders,” Basal Ganglia, 1, No. 2, 65–77 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gorbachevskaya.

Additional information

Translated from Morfologiya, Vol. 146, No. 5, pp. 24–28, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbachevskaya, A.I. Organization of the Pallidal Projections of the Rostromedial Tegmental Nucleus of the Dog Brain. Neurosci Behav Physi 45, 878–881 (2015). https://doi.org/10.1007/s11055-015-0159-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0159-8

Keywords

Navigation