Skip to main content
Log in

Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

Three structures in the dermis of the dorsal arm plate (DAP) of the brittlestar, Ophiocoma wendti, appear to comprise a photoreceptor system. The upper surface of the DAP bears transparent, knob-like, microscopic structures which are expanded peripheral trabeculae (EPT) of the calcite stereom. The EPT are part of the photoreceptor system and can facilitate light transmission through the DAP by decreasing light refraction, reflection and absorption that occur at stereom/stroma interfaces. Bundles of nerve fibres located below the EPT are a second component of the system, and may function as primary photoreceptors. The intensity of light impinging on the putative sensory tissue is regulated by the diurnal activity cycle of chromatophores, the third element of the system. During the day the chromatophores cover the EPT and thereby shade the nerve fibres. At night they retract into inter-trabecular channels, uncovering the EPT and thereby exposing the nerve fibres to transmitted light. Thus, the transparent stereom may play a role in photoreception, in addition to its generally recognized skeletal function. Although ciliated cells that may be sensory are present in the epidermis of Ophiocoma wendti, they do not appear to be photoreceptors. Functional analogues of the brittlestar photoreceptor system in other echinoderms are discussed, emphasizing the relationship between photosensitivity and the transparency of the stereom in several classes of Echinodermata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berrios A, Brink D, del Castillo J, Smith DS (1985) Some properties of the action potentials conducted in the spines of the sea urchin Diadema antillarum. Comp Biochem Physiol [A] 81:15–23

    Google Scholar 

  • Brehm P (1977) Electrophysiology and luminescence of an ophiuroid radial nerve. J Exp Biol 71:213–227

    Google Scholar 

  • Byrne M (1983) Evisceration and autotomy in the holothurian, Eupentacta quinquesemita (Selenka), Ph. D. Thesis. University of Victoria

  • Cobb JLS (1985) The neurobiology of the ectoneural/hyponeural synaptic connection in an echinoderm. Biol Bull 168:432–446

    Google Scholar 

  • Cobb JLS, Moore A (1986) Comparative studies on the receptor structure in the brittlestar Ophiura ophiura. J Neurocytol 15:97–108

    Google Scholar 

  • Cobb JLS, Stubbs TR (1982) The giant neurone system in ophiuroids: III. The detailed connections of the circumoral nerve ring. Cell Tissue Res 226:675–687

    Google Scholar 

  • Dambach M, Weber W (1975) Inhibition of pigment movement by cytochalasin B in the chromatophores of the sea urchin Centrostephanus longispinus. Comp Biochem Physiol [C] 50:49–52

    Google Scholar 

  • Dietrich HF, Fontaine AR (1975) A decalcification method for ultrastructure of echinoderm tissues. Stain Technol 50:351–354

    Google Scholar 

  • Döderlein L (1898) Ueber “Krystallköper” bei Seesternen. Denkschr Med Nat Ges Jena 8:491–494

    Google Scholar 

  • Donnay G, Pawson DL (1969) X-ray diffraction studies of echinoderm plates. Science 166:1147–1150

    Google Scholar 

  • Eakin R, Brandenberger JL (1979) Effects of light on ocelli of seastars. Zoomorphologie 92:191–200

    Google Scholar 

  • Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107:414–419

    Google Scholar 

  • Gras H, Weber W (1983) Light-induced alterations in cell shape and pigment displacement in chromatophores of the sea urchin Centrostephanus longispinus. Cell Tissue Res 182:165–176

    Google Scholar 

  • Hendler G (1984a) Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae). PSZNI Mar Ecol 5:379–401

    Google Scholar 

  • Hendler G (1984b) The association of Ophiothrix lineata and Callyspongia vaginalis: A brittlestar-sponge cleaning symbiosis? PSZNI Mar Ecol 5:9–27

    Google Scholar 

  • Holland ND (1984) Echinodermata: epidermal cells. In: Bereiter-Hahn J (ed) Biology of the integument, vol 1. Invertebrates. Springer, Berlin, pp 756–774

    Google Scholar 

  • Märkel K, Röser U (1985) Comparative morphology of echinoderm calcified tissues: histology and ultrastructure of ophiuroid scales (Echinodermata, Ophiuroidea). Zoomorphology 105:197–207

    Google Scholar 

  • Martinez JL (1977a) Ultrasestructura del tejido nervioso podial de Ophiothrix fragilis. Bol R Soc Esp Hist Nat Sec Biol 75:315–333

    Google Scholar 

  • Martinez JL (1977b) Estructura y ultraestructura del epithelio de los podios de Ophiothrix fragilis (Echinodermata, Ophiuroidea). Bol R Soc Esp Hist Nat Sec Biol 75:275–301

    Google Scholar 

  • McFarland WN (1986) Light in the sea — correlations with behaviors of fishes and invertebrates. Am Zool 26:389–401

    Google Scholar 

  • Millott N (1975) The photosensitivity of echinoids. Adv Mar Biol 13:1–52

    Google Scholar 

  • Millott N, Coleman R (1969) The podial pit — a new structure in the echinoid Diadema antillarum Philippi. Z Zellforsch 95:187–197

    Google Scholar 

  • Moore A (1985) Neurophysiological studies on the perception of environmental stimuli in Ophiura ophiura (L.) (Echinodermata, Ophiuroidea). In: Keegan BF, O'Connor BDS (eds) Echinodermata: proceedings of the 5th International Echinoderm Conference, Galway. AA Balkema, Rotterdam, pp 627–631

    Google Scholar 

  • Moore A, Cobb JLS (1985) Neurophysiological studies on photic responses in Ophiura ophiura. Comp Biochem Physiol [A] 80:11–16

    Google Scholar 

  • Pentreath VW, Cobb JLS (1972) Neurobiology of Echinodermata. Biol Rev 47:363–392

    Google Scholar 

  • Pentreath VW, Cobb JLS (1982) Echinodermata. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon, Oxford, pp 440–472

    Google Scholar 

  • Raup DM (1960) Ontogenetic variation in the crystallography of echinoid calcite. J Paleontology 34:1041–1050

    Google Scholar 

  • Raup DM (1966) The endoskeleton. In: Boolootian RA (ed) Physiology of Echinodermata. Interscience, New York, pp 379–395

    Google Scholar 

  • Robles LJ, Breneman JW, Anderson EO, Nottoli VA, Kegler LR (1986) Immunocytochemical localization of a rhodopsin-like protein in the lipochondria in photosensitive neurons of Aplysia californica. Cell Tissue Res 244:115–120

    Google Scholar 

  • Ryberg E, Lundgren B (1979) Some aspects on pigment cell distribution and function in the developing echinopluteus of Psammechinus miliaris. Dev Growth Differ 21:129–140

    Google Scholar 

  • Smith AB (1980) Stereom microstructure of the echinoid test: special papers in paleontology No 25. Paleont Assoc, London, pp 1–81

    Google Scholar 

  • Stubbs TR (1982) The neurophysiology of photosensitivity in ophiuroids. In: Lawrence JM (ed) Proceedings, International Echinoderms Conference, Tampa. AA Balkema, Rotterdam, pp 403–408

    Google Scholar 

  • Takasu N, Yoshida M (1983) Photic effects on photosensory microvilli in the seastar Asterias amurensis (Echinodermata: Asteroidea). Zoomorphology 103:135–148

    Google Scholar 

  • Weber W (1983) Photosensitivity of chromatophores. Am Zool 23:495–506

    Google Scholar 

  • Weber W, Dambach M (1974) Light-sensitivity of isolated pigment cells of the sea urchin Centrostephanus longispinus. Cell Tissue Res 148:437–440

    Google Scholar 

  • Weber W, Gras H (1980) Ultrastructural observations on changes in cell shape in chromatophores of the sea urchin Centrostephanus longispinus. Cell Tissue Res 206:21–33

    Google Scholar 

  • Weber W, Grosmann M (1977) Ultrastructure of the basiepithelial nerve plexus of the sea urchin, Centrostephanus longispinus. Cell Tissue Res 175:551–562

    Google Scholar 

  • Whitfield PJ, Emson RH (1983) Presumptive ciliated receptors associated with the fibrillar glands of the spines of the echinoderm Amphipholis squamata. Cell Tissue Res 232:609–624

    Google Scholar 

  • Wilkie IC (1979) The juxtaligamental cells of Ophiocomina nigra (Abildgaard) (Echinodermata: Ophiuroidea) and their possible role in mechano-effector function of collagenous tissue. Cell Tissue Res 197:515–530

    Google Scholar 

  • Yoshida M (1966) Photosensitivity. In: Boolootian RA (ed) Physiology of Echinodermata. Interscience, New York, pp 379–395

    Google Scholar 

  • Yoshida M (1979) Extraocular photoreception. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin, pp 581–640

    Google Scholar 

  • Yoshida M, Takasu N, Tomatsu S (1984) Photoreception in echinoderms. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 743–771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendler, G., Byrne, M. Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology 107, 261–272 (1987). https://doi.org/10.1007/BF00312172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312172

Keywords

Navigation