Skip to main content
Log in

The organization of serotonin-immunoreactive neuronal systems in the brain of the crested newt, Triturus cristatus carnifex Laur.

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The distribution of serotonin (5-HT) immunoreactive structures has been investigated in the brain of the crested newt by means of indirect immunofluorescence, and unlabeled antibody peroxidase-antiperoxidase-complex (PAP) or biotin-avidin-system (BAS) techniques. In the newt, the bulk of the serotoninergic system extends from the raphe region of the medulla oblongata, through the isthmus, toward the mesencephalic tegmentum, and is characterized by pyriform neurons mainly located in a subependymal position, close to the midline. Also in the caudal hypothalamus, in addition to some 5-HT-positive adenohypophysial cells, many immunoreactive CSF-contacting neurons are found lining the paraventricular organ and the nucleus infundibularis dorsalis. A rich serotoninergic innervation was observed in the preoptic area and in the habenular complex. Concerning the telencephalon, immunopositive nerve fibers are encountered in the dorsal pallium, primordium hippocampi, striatum and olfactory bulbs. The general organization of serotoninergic systems in the newt brain exhibit close similarities to that described in higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dubé L, Parent A (1982) The organization of the monoamine-containing neurons in the brain of the salamander, Necturus maculosus. J Comp Neurol 211:21–30

    Google Scholar 

  • Ekström P, Van Veen T (1984) Distribution of 5-hydroxytryptamine (serotonin) in the brain of the teleost Gasterosteus aculeatus L. J Comp Neurol 226:307–320

    Google Scholar 

  • Fasolo A, Franzoni MF (1971) On the occurrence of monoamine-containing neurons in the hypothalamus of the newt. Atti Accad Sci Torino, I Cl Sci Mat Fis Natur 105:681–684

    Google Scholar 

  • Fasolo A, Franzoni MF (1974) A Golgi study on tanycytes and liquor-contacting cells in the posterior hypothalamus of the newt. Cell Tissue Res 154:151–166

    Google Scholar 

  • Fasolo A, Franzoni MF (1977) A Golgi study on the hypothalamus of Amphibia. The neuronal typology. Cell Tissue Res 178:341–354

    Google Scholar 

  • Fasolo A, Gaudino G, Mazzi V (1981) Somatostatin immunoreactive fibres and perikarya in the brain of the newt. 2. The extra-hypothalamic pattern. Monitore Zool Ital (N.S.) 15:229–238

    Google Scholar 

  • Fasolo A, Franzoni MF, Clairambault P (1984) Immunocytochemical analysis of the habenulo-interpeduncular system in the newt. Neurosci Lett 18 Suppl: 218

    Google Scholar 

  • Franzoni MF, Fasolo A, Calas A, Bottiroli G, Geffard M, Steibusch H (1984) Combined cytochemical techniques in the analysis of the central monoamine-containing systems in the lower vertebrates. VII International Congress Histochem. Cytochem. Helsinki

  • Franzoni MF, Fasolo A, Calas A, Thibault J (1985) Tyrosine hydroxylase immunopositivity in the hypothalamus of the newt. Tenth International Meeting of the International Society for Neurochemistry, Riva del Garda (Italy)

  • Gaudino G, Fasolo A (1980) Substance P-related peptides in the hypothalamus of Amphibia. Cell Tissue Res 211:241–250

    Google Scholar 

  • Gould SG (1976) Grades and clades revisited. In: Masterton RB, Hodos W, Jerison H (eds) Evolution, brain, and behavior: Persistent problems. John Wiley and Sons, New York, Toronto, London, Sydney, pp 115–122

    Google Scholar 

  • Gruberg ER, Harris WA (1981) The serotoninergic projections to the tectum of normal and eyeless salamanders. J Morphol 170:55–69

    Google Scholar 

  • Hanke W (1976) Neuroendocrinology. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin New York London, pp 975–1020

    Google Scholar 

  • Herrick CJ (1917) The internal structure of the midbrain and thalamus of Necturus. J Comp Neurol 28:215–348

    Google Scholar 

  • Herrick CJ (1930) The medulla oblongata of Necturus. J Comp Neurol 50:1–96

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander, Ambystoma tigrinum. The University of Chicago Press, Chicago

    Google Scholar 

  • Hoogland PV, Smeets WJAJ, Steinbusch HWM (1983) Distribution of serotonin-immunoreactivity in the central nervous system of the lizard Gekko gecko. Neurosci lett [Suppl] 14:S-170

    Google Scholar 

  • Hsu SM, Raine L (1982) Versatility of biotin-labeled lectins and avidin-biotin-peroxidase complex for the localization of carbohydrate in tissue sections. J Histochem Cytochem 30:157–161

    Google Scholar 

  • Kah O, Chambolle P (1983) Serotonin in the goldfish, Carassius auratus. An immunocytochemical study. Cell Tissue Res 234:319–333

    Google Scholar 

  • Kondo Y, Nagatsu I, Yoshida M, Karasawa N, Nagatsu T (1983) Existence of noradrenaline cells and serotonin cells in the pituitary gland of Rana catesbeiana. Cell Tissue Res 228:405–408

    Google Scholar 

  • Johansson O, Hökfelt T, Pernow B, Jeffcoate SL, White N, Steinbusch HWM, Verhofstad AAJ, Emson PJ, Spindel E (1984) Immunohistochemical support for three putative neurotransmitters in one neuron: coexistence of 5-hydroxytryptamine, Substance P- and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience 6:1857–1881

    Google Scholar 

  • Johns MA, Azmitia EC, Krieger DT (1982) Specific in vitro uptake of serotonin by cells in the anterior pituitary in the rat. Endocrinology 110:754–760

    Google Scholar 

  • Leghissa S (1962) L'evoluzione del tetto ottico nei bassi Vertebrati. Arch Anat Embriol 67:343–413

    Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbeson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, London, pp 203–255

    Google Scholar 

  • Parent A (1979) Anatomical organization of monoamine- and acetylcholinesterase-containing neuronal systems in the vertebrate hypothalamus. In: Morgane P, Panksepp J (eds) Handbook of the hypothalamus, 1. Anatomy of the hypothalamus. M. Dekker Inc, New York, Basel, pp 511–554

    Google Scholar 

  • Parent A (1981) Comparative anatomy of the serotoninergic systems. J Physiol (Paris) 77:147–156

    Google Scholar 

  • Parent A, Dubé L, Braford Jr MR, Northcutt RG (1978) The organization of monoamine-containing neurons in the brain on the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. J Comp Neurol 182:495–516

    Google Scholar 

  • Peressini S, Brusco A, Pecci Saavedra J (1984) Basis for the specificity of anti-5HT-like antisera in immunocytochemistry applied to the central nervous system. Histochemistry 80:597–601

    Google Scholar 

  • Prasada Rao PD, Hartwig HG (1974) Monoaminergic tracts of the diencephalon and innervation of the pars intermedia in Rana temporaria. A fluorescence and microspectrofluorometric study. Cell Tissue Res 151:1–26

    Google Scholar 

  • Ramón Moliner E (1968) The morphology of dendrites. In: Bourne GH (ed) The structure and function of nervous tissue. Academic Press, New York pp 205–267 (Vol I)

    Google Scholar 

  • Reinhold CH, Hartwig HG (1982) Progress in microfluorometric identification of monoamine fluorophores. Brain Res Bull 9:97–105

    Google Scholar 

  • Richards JG, Lorez HP, Colombo VE, Guggenheim R, Kiss D, Wu JY (1981) Demonstration of supra-ependymal 5HT fibres in human brain and their immunohistochemical identification in rat brain. J Physiol 77:219–224

    Google Scholar 

  • Schipper J, Tilders FJH (1983) A new technique for studying specificity of immunocytochemical procedures: specificity of serotonin immunostaining. J Cytochem Histochem 31:12–18

    Google Scholar 

  • Shimizu, K, Kimura H, Yamamoto T, Ochi J (1983) Immunohistochemical demonstration of the serotonin-containing subependymal cells in the frog hypothalamus. Histochemistry 79:23–29

    Google Scholar 

  • Sims T (1977) The development of monoamine containing neurons in the brain and spinal cord of the salamander Ambystoma mexicanum. J Comp Neurol 173:319–336

    Google Scholar 

  • Steinbusch HWM, Tilders FIH (1985) Immunohistochemical techniques or light-microscopical localization of dopamine, noradrenaline, adrenaline, serotonin and histamine in the central nervous system. In: I. Furness, M. Costa (eds). IBRO Handbook Series: Methods in the neurosciences. Vol. 6: Histochemical and ultrastructural identification of monoamine neurons, John Wiley & Sons, Chichester, UK (in press)

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Penke B, Varga J, Joosten HWJ (1981) Immunohistochemical characterization of monoamine-containing neurons in the central nervous system by antibodies to serotonin and noradrenaline. A study in the rat and in the lamprey. Acta Histochem, [Suppl] XXIV:107–122

    Google Scholar 

  • Steinbusch HVM, Verhofstad AAJ, Joosten HWJ (1982) Antibodies to serotonin for neuroimmunocytochemical studies. J Histochem Cytochem 30:756–780

    Google Scholar 

  • Steinbusch HWM, de Vente J, Schipper I (1985) Immunohistochemistry of monoamine in the central nervous system. In: P. Panula, H. Paivärinta and S. Soinila (eds): Neurology and neurobiology, vol. 10: Neurochemistry Today, Alan Liss, New York (in press)

    Google Scholar 

  • Taban CH, Cathieni M (1983) Distribution of Substance P-like immunoreactivity in the brain of the newt (Triturus cristatus). J Comp Neurol 216:453–470

    Google Scholar 

  • Ueda S, Nojyo Y, Sano Y (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog Rana catesbeiana. Anat Embryol 169:219–229

    Google Scholar 

  • Verhofstad AAJ, Steinbusch HWM, Joosten HWJ, Penke B, Varga J, Goldstein M (1983) Immunocytochemical localization of noradrenaline, adrenaline and serotonin. In: Polak JM, Van Noorden S (eds): Immunocytochemistry Wright PSG, Bristol, London, Boston, pp 143–168

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1973) Comparative ultrastructure of the cerebrospinal fluid-contacting neurons. Int Rev Cytol 35:189–251

    Google Scholar 

  • Vigh-Teichmann I, Vigh B (1974) The infundibular cerebrospinalfluid contacting neurons. Adv Anat Embryol Cell Biol 50, Fasc. 2

    Google Scholar 

  • Wallace JA, Petrusz P, Lauder JM (1982) Serotonin immunocytochemistry in the adult and developing rat brain: methodological and pharmacological considerations. Brain Res Bull 9:117–129

    Google Scholar 

  • Wolters JG, Ten Donkelar HJ, Verhofstad AAJ, Steinbusch HWM, Joosten HWJ (1982) Immunohistochemical localization of tyrosine hydroxylase, serotonin, substance-P, and Leuand met-enkephalin in the brain stem and spinal cord of the lizard (Varanus exantematicus). Neurosci Lett [Suppl] 10 p 525

    Google Scholar 

  • Wolters JG, Ten Donkelaar HJ, Steinbusch HWM, Verhofstad AAJ (1985) Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study. Neuroscience 14:169–193

    Google Scholar 

  • Yoshida M, Nagatsu I, Kondo Y, Karasawa N, Ohno T, Spatz M, Nagatsu T (1982) Two cell types in monoamine-containing “liquor-contacting” neuron system of the frog brain. Experientia 38:1097–1099

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasolo, A., Franzoni, M.F., Gaudino, G. et al. The organization of serotonin-immunoreactive neuronal systems in the brain of the crested newt, Triturus cristatus carnifex Laur.. Cell Tissue Res. 243, 239–247 (1986). https://doi.org/10.1007/BF00251037

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251037

Key words

Navigation