Skip to main content
Log in

Morphology of posterior canal related secondary vestibular neurons in rabbit and cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    The morphology of secondary vertical vestibular neurons was investigated by injection of horseradish peroxidase (HRP) into cells connected to the posterior canal system in rabbits (lateral-eyed animals) and cats (frontal-eyed animals). Vestibular neurons were identified by stimulation with bipolar electrodes implanted into the ampullae of the anterior and posterior (PC) semicircular canals of pigmented rabbits; in the cat, these cells were identified by natural and electrical stimulation. Axons monosynaptically activated by PC stimulation were injected with HRP in the medial longitudinal fasciculus (MLF). These were later reconstructed by light microscopy after the brains had been processed with a DAB-CoCl2 method.

  2. 2.

    In the rabbit the majority of the axons bifurcated after crossing the midline with one branch ascending and the other descending in the MLF. The ascending branches gave rise to collaterals that terminated in both the trochlear nucleus and the inferior rectus subdivision of the oculomotor nucleus. In addition some axons also sent collaterals into the paramedian pontine reticular formation, the periaqueductal grey and the interstitial nucleus of Cajal. The descending branches were followed to the caudal part of the medulla in the MLF and gave rise to collaterals terminating in the vestibular nuclei, the medullary reticular formation, the perihypoglossal nuclei, the abducens nucleus, and the facial nucleus. In another cell type axons crossed the midline without giving off any collaterals and proceeded caudally in the caudal MLF. The synaptic effects of the two types of cells were concluded to be excitatory and inhibitory, respectively. Cell bodies of contralaterally projecting neurons were located in either the medial or ventro-lateral vestibular nuclei.

  3. 3.

    In the cat we observed two neuron classes, with contralaterally projecting axons, whose synaptic effects are presumably excitatory. Their cell somata were located in the medial vestibular nucleus. Termination patterns were similar to both the trochlear and oculomotor nuclei, but neither projected to the abducens nucleus. One class of neurons was almost identical to that found in the rabbit with the main axon bifurcating in the MLF. The second type lacked a descending branch in the MLF. Axon collaterals of the latter type crossed the midline within the oculomotor nucleus after terminating in the inferior rectus subdivision to reach a similar portion of the ipsilateral oculomotor nucleus. Collaterals of these axons also terminated bilaterally in the supraoculomotor region between trochlear and oculomotor nucleus, the interstitial nucleus of Cajal and prerubral loci (including the fields of Forel). In similarity to the rabbit, presumed inhibitory vestibular neurons were found with axons directed caudally in the MLF without brain stem collaterals.

  4. 4.

    Ipsilateral neurons with ascending axons considered to be inhibitory were only studied in the rabbit. Their cell bodies were located in the superior vestibular nucleus, the axon joining the rostral MLF with major termination sites in the superior rectus and in the inferior oblique subdivisions of the oculomotor nucleus. Other terminations were in the paramedian pontine reticular formation and in the medullary reticular formation.

  5. 5.

    These data indicate strong similarities in the morphology of PC linked secondary vestibular neurons in the two species suggesting paramount importance for this wiring pattern in the spatial organization of eye movements. Variations in the termination patern likely reflect different kinematic characteristics of extraocular muscles necessary for the appropriate, but different, type of compensatory eye movements in lateral-versus frontal-eyed animals. We conclude that the termination pattern of secondary vestibular neurons forms a basic part of the neuronal matrix for space-time coordinated eye-movements and other related vestibular functions. This neuronal network provides a morphological basis for a conversion factor for the transformation of vestibular into e.g. extraocular muscle coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2: 141–145

    Google Scholar 

  • Akagi Y (1978) The localization of the motor neurons innervating the extraocular muscles in the oculomotor nuclei of the cat and rabbit, using horseradish peroxidase. J Comp Neurol 181: 745–762

    Google Scholar 

  • Akaike T (1973) Comparison of neuronal composition of the vestibulospinal system between cat and rabbit. Exp Brain Res 18: 429–432

    Google Scholar 

  • Alley K (1977) Anatomical basis for interaction between cerebellar flocculus and brainstem. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Anderson, JH (1981a) Behavior of the vertical canal VOR in normal and INC-lesioned cats. In: Fuchs A, Becker W (eds) Progress in oculomotor research. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Anderson JH (1981b) Ocular torsion in the cat after lesions of the interstitial nucleus of Cajal. Ann NY Acad Sci 374: 865–871

    Google Scholar 

  • Baker R, Berthoz A (1974) Organization of vestibular nystagmus in oblique oculomotor system. J Neurophysiol 37: 195–217

    Google Scholar 

  • Baker R, Precht W, Berthoz A (1973) Synaptic connections to trochlear motoneurons determined by individual vestibular nerve branch stimulation in the cat. Brain Res 64: 402–406

    Google Scholar 

  • Baker R, Gresty M, Berthoz A (1976) Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movements in the cat. Brain Res 101: 366–371

    Google Scholar 

  • Baker R (1977), The nucleus prepositus hypoglossi. In: Brooks B, Bajandes FJ (eds) Eye movements. Plenum Press, New York London, pp 145–178

    Google Scholar 

  • Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements: a survey of the structural and functional correlates. Brain 103: 23–69

    Google Scholar 

  • Berthoz A, Yoshida K, Vidal PP (1981) Horizontal eye movement signals in second-order vestibular nuclei neurons in the cat. Ann. NY Acad Sci 374: 144–156

    Google Scholar 

  • Blanks RH, Blanks JH (1980) Afferents to the cerebellar flocculus in cat conveying visual input. Invest Ophthalmol [Suppl] ARVO Abst 7: 58

    Google Scholar 

  • Brodal A, Pompeiano O, Walberg F (1962) The vestibular nuclei and their connections. Oliver and Boyd, London

    Google Scholar 

  • Büttner U, Büttner-Ennever JA, Henn V (1977a) Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Res 130: 239–252

    Google Scholar 

  • Büttner U, Hepp K, Henn V (1977b) Neurons in the rostral mesencephalic and paramedian pontine reticular formation generating fast eye movements. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience, vol 1. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Büttner-Ennever JA, Büttner U (1978) A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey. Brain Res 151: 31–47

    Google Scholar 

  • Cohen B, Henn V (1972) Unit activity in the pontine reticular formation associated with eye movements. Brain Res 46: 403–410

    Google Scholar 

  • Cohen B, Suzuki JI (1963) Eye movements induced by ampullary nerve stimulation. Am J Physiol 204: 347–351

    Google Scholar 

  • Cohen B, Suzuki JI and Bender, MB (1964) Eye movements from semicircular canal nerve stimulation in the cat. Ann Otol Rhinol Laryngol (St. Louis) 73: 153–169

    Google Scholar 

  • Duensing F (1961) Die Erregungskonstellationen im Rautenhirn des Kaninchens bei den Labyrinthstellreflexen (Magnus). Naturwissenschaften 48: 681–690

    Google Scholar 

  • Duensing F, Schaefer KP, Trevisan C (1963) Die Raddrehung vermittelnde Neurone der zentralen Funktionstruktur der Labyrinthstellreflexe auf Kopf und Augen. Arch Psychiat Nervenkrankh 204: 113–132

    Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesioninduced neuronal plasticity in sensorimotor systems. Springer, New York

    Google Scholar 

  • Fluur E (1959) Influence of semicircular ducts on extraocular muscles. Acta Otolaryngol [Suppl] 149: 1–46

    Google Scholar 

  • Fukushima K, Peterson BW, Wilson VJ (1979) Vestibulospinal, reticulospinal and interstitiospinal pathways in the cat. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement, Progress in brain research, vol 50. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Furuya N, Markham CH (1981) Arborization of axons in oculomotor nucleus identified by vestibular stimulation and intra-axonal injection of horseradish peroxidase. Exp Brain Res 43: 289–303

    Google Scholar 

  • Gacek RR (1969) The course and central termination of first order neurons supplying vestibular end organs in the cat. Acta Oto-Laryngol (Stockh) [Suppl] 254: 1–66

    Google Scholar 

  • Gacek RR (1971) Anatomical demonstration of the vestibulocular projections in the cat. Laryngoscope 81: 1559–1595

    Google Scholar 

  • Ghelarducci B, Highstein SM, Ito M (1977) Origin of the preoculomotor projections through the brachium conjunctivum and their functional roles in the vestibulo-ocular reflex. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience, vol 1. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Graf W, Simpson JI (1981) The relations between the semicircular canals, the optic axis, and the extraocular muscles in lateraleyed and frontal-eyed animals. In: Becker W, Fuchs A (eds) Progress in oculomotor research. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Graf W, McCrea RA, Baker RG (1981) Morphology of secondary vestibular neurons linked to the posterior canal in rabbit and cat. Neurosci Abstr 7: 16.05

    Google Scholar 

  • Hassler R (1972) Supranuclear structures regulating binocular eye and head movements. Bibl Ophthalmol 82: 207–219

    Google Scholar 

  • Hassler R, Hess WR (1954) Experimentelle und anatomische Befunde über die Drehbewegungen und ihre nervösen Apparate. Arch Psychiat Z. Neurol 192: 488–526

    Google Scholar 

  • Henn V, Hepp K, Jaeger J (1979) Transformation of movement into position signals for the oculomotor system: Localization and operational mode for a neuronal integrator. Exp Brain Res 36: R14

    Google Scholar 

  • Highstein SM (1971) Organization of the inhibitory and excitatory vestibulo-ocular reflex pathways to the third and fourth nuclei in rabbit. Brain Res 32: 218–224

    Google Scholar 

  • Highstein SM (1973) The organization of the vestibulo-oculomotor and trochlear reflex pathways in the rabbit. Exp Brain Res 17: 285–300

    Google Scholar 

  • Högyes E (1880, 1881, 1884) Az associait szemmozgások ideg- mechanismusáról. Értekézesek a természéttudományok köréböl. X: 18, 1–62 (1880); XI: 1, 1–100 (1881); XIV: 9, 1–84 (1884) (German translation: Högyes A (1912) Über den Nervenmechanismus der assoziierten Augenbewegungen. Monatsschr Ohrenheilk Laryngol Rhinol 46: 685–740; 809–841; 1027–1083; 1353–1413; 1554–1571)

    Google Scholar 

  • Hyde JE, Toczek S (1962) Functional relation of interstitial nucleus to rotatory movements evoked from zone incerta stimulation. J Neurophysiol 25: 455–466

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1973a) The neural pathways mediating reflex contraction of extraocular muscles during semicircular canal stimulation in rabbits. Brain Res 55: 183–188

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1973b) The neural pathways relaying reflex inhibition from semicircular canals to extraocular muscles of rabbits. Brain Res 55: 189–193

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976a) Pathways for the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res 24: 257–271

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976b) Postsynaptic inhibition of oculomotor neurons involved in vestibulo-ocular reflexes arising from semicircular canals of rabbits. Exp Brain Res 24: 273–283

    Google Scholar 

  • Jung R, Hassler R (1960) The extrapyramidal motor system. In: Handbook of physiology, sect 1, 2. Am Physiol Soc. Washington, DC, 863–927

    Google Scholar 

  • Kaneko CRS, Evinger CL, Fuchs AF (1981) Role of cat pontine burst neurons in generation of saccadic eye movements. J Neurophysiol 46: 387–408

    Google Scholar 

  • Kawasaki T, Sato Y (1980) Afferent projection from the dorsal nucleus of the raphe to the flocculus in cats. Brain Res 197: 496–502

    Google Scholar 

  • Kawasaki T, Kato I, Sato Y, Mizukoshi K (1981) The brain-stem projection to the cerebellar flocculus relevant to optokinetic responses in cats. Ann NY Acad Sci 374: 455–464

    Google Scholar 

  • Keller EL (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. J Neurophysiol 37: 316–332

    CAS  PubMed  Google Scholar 

  • Kim JH (1974) Studies on the functional interrelation between the vestibular canals and the extraocular muscles. Korean J Physiol 8: 87–103

    Google Scholar 

  • King WM, Fuchs AF (1979) Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. J Neurophysiol 42: 861–876

    Google Scholar 

  • King WM, Fuchs AF, Magnin M (1981) Vertical eye movement-related responses of neurons in midbrain near interstitial nucleus of Cajal. J Neurophysiol 46: 549–562

    CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1932) The regulations of eye positions and movements induced by the labyrinth. Laryngoscope 42: 233–332

    Google Scholar 

  • Lorente de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30: 245–291

    Google Scholar 

  • Markham CH, Precht W, Shimazu H (1966) Effect of stimulation of interstitial nucleus of Cajal on vestibular unit activity in the cat. J Neurophysiol 29: 493–507

    Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. In: Granit R, Pompeiano O (eds) Progress in Brain Research, vol 50. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • McCrea RA, Yoshida K, Berthoz A, Baker R (1980) Eye movement related activity and morphology of second order vestibular neurons terminating in the cat abducens nucleus. Exp Brain Res 40: 468–473

    Google Scholar 

  • McCrea RA, Yoshida K, Evinger C, Berthoz A (1981) The location, axonal arborization, and termination sites of eyemovement-related secondary vestibular neurons demonstrated by intra-axonal HRP injection in the alert cat. In: Fuchs A, Becker W (eds) Progress in oculomotor research. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • McMasters RE, Weiss AH, Carpenter MB (1966) Vestibular projections to the nuclei of the extraocular muscles: Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am J Anat 118: 163–194

    Google Scholar 

  • Meyer DL, Schaefer KP, Winkelmann A (1971) Interaction of acoustic and vestibular afferent activity observed in ear muscles. Z Neurol 200: 213–218

    Google Scholar 

  • Meyer zum Gottesberge A, Maurer W (1949) Über den Funktionsmechanismus des vertikalen Bogengangsystems bei der Entstehung des rotatorischen und vertikalen Nystagmus. Arch Ohren-, NasenKehlkopfheilk / Z Hals-, Nasen-, Ohrenheilk. 155: 705–725

    Google Scholar 

  • Mulder ME (1875) Über parallele Rollbewegungen der Augen. Graefe's Arch Ophthalmol 21: 68–124

    Google Scholar 

  • Nyberg-Hansen R (1964) Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus: An experimental study with silver impregnation methods in the cat. J Comp Neurol 122: 355–367

    Google Scholar 

  • Ohm J (1919) Über die Beziehungen der Augenmuskeln zu den Ampullen der Bogengänge beim Menschen und Kaninchen. Klin Monatsbl Augenheilk 62: 289–315

    Google Scholar 

  • Pellionisz A, Llinás R (1980) Tensorial approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience 5: 1125–1136

    Google Scholar 

  • Petras JM (1967) Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Res 6: 275–324

    Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010

    Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. Studies of brain function, vol 2. Springer, New York

    Google Scholar 

  • Schaefer KP (1972) Vestibularapparat. Physiologie des zentralen vestibulären Systems. In: Gauer OH, Kramer K, Jung R (eds) Physiologie des Menschen, vol 12. Urban & Schwarzenberg, München

    Google Scholar 

  • Schaefer KP, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Handbook of sensory physiology, vol 1 part 2. Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Schaefer KP, Meyer DL, Schott D (1971) Optic and vestibular influences on ear movements. Brain Behav, Evol 4: 323–333

    Google Scholar 

  • Schaefer KP, Schott D, Meyer DL (1975) On the organization of neuronal circuits involved in the generation of the orienting response (visual grasp reflex). Fortschr Zool 23: 199–212

    Google Scholar 

  • Schwindt PC, Precht W, Richter A (1974) Monosynaptic excitatory and inhibitory pathways from medial midbrain nuclei to trochlear motoneurons. Exp Brain Res 20: 223–238

    Google Scholar 

  • Shaw MD, Baker R (1983) Direct projections from the vestibular nuclei to the facial nucleus in cat. J Neurophysiol (in press)

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29: 467–492

    Google Scholar 

  • Simpson JI, Graf W (1981) Eye muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann NY Acad Sci 374: 20–30

    Google Scholar 

  • Suzuki J-I, Cohen B (1964) Head, eye, body and limb movements from semicircular canal nerves. Exp Neurol 10: 393–405

    Google Scholar 

  • Suzuki J, Cohen B, Bender MB (1964) Compensatory eye movements induced by vertical semicircular canal stimulation. Exp Neurol 9: 137–160

    Google Scholar 

  • Suzuki JI, Goto K, Tokumasu K, Cohen B (1969) Implantation of electrodes near individual vestibular nerve branches in mammals. Ann Otol Rhinol Laryngol (St. Louis) 78: 815–826

    Google Scholar 

  • Szentágothai J (1943) Die zentrale Innervation der Augenbewegungen. Arch Psychiat Nervenkrankh 116: 721–760

    Google Scholar 

  • Szentágothai J (1950) The elementary vestibulo-ocular reflex arc. J Neurophysiol 13: 395–407

    PubMed  Google Scholar 

  • Taber-Pierce E, Hoddevik GH, Walberg F (1977) The cerebellar projection from the raphe nuclei in the cat as studied with the method of retrograde transport of horseradish peroxidase. Anat Embryol 152: 73–87

    Google Scholar 

  • Tarlov E (1970) Organization of vestibulo-oculo-motor projections in the cat. Brain Res 20: 159–179

    Google Scholar 

  • Tarlov E (1972) Anatomy of the two vestibulo-oculomotor projection systems. In: Brodal A, Pompeiano O (eds) Basic aspects of central vestibular mechanisms. Progress in brain research, vol 37. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Uchino Y, Hirai N, Watanabe S (1978) Vestibulo-ocular reflex from the posterior canal nerve to extraocular motoneurons in the cat. Exp Brain Res 32: 337–388

    Google Scholar 

  • Uchino Y, Hirai N, Suzuki S, Watanabe S (1980a) Axonal branching in the trochlear and oculomotor nuclei of single vestibular neurons activated from the posterior semicircular nerve in the cat. Neurosci Lett 18: 283–288

    Google Scholar 

  • Uchino Y, Suzuki S, Watanabe S (1980b) Vertical semicircular inputs to cat extraocular motoneurons. Exp Brain Res 41: 45–53

    Google Scholar 

  • Uchino Y, Hirai N, Suzuki S (1982) Branching pattern and properties of verticaland horizontal-related excitatory vestibuloocular neurons in the cat. J Neurophysiol 48: 891–903

    Google Scholar 

  • Wilson VJ, Wylie RM, Marco LA (1968) Synaptic inputs to cells in the medial vestibular nucleus. J Neurophysiol 31: 176–185

    Google Scholar 

  • Wilson VJ, Maeda M (1974) Connections between semicircular canals and neck motoneurons in the cat. J Neurophysiol 37: 346–357

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by DFG grant Gr 688/1, NIH grants 13742 and EY02007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, W., McCrea, R.A. & Baker, R. Morphology of posterior canal related secondary vestibular neurons in rabbit and cat. Exp Brain Res 52, 125–138 (1983). https://doi.org/10.1007/BF00237157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237157

Key words

Navigation