Skip to main content
Log in

Modulation of mitochondrial succinate dehydrogenase activity, mechanism and function

  • Review Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The mitochondrial succinate dehydrogenase (E.C. 1.3.3.99) is subjected to apparently complicated regulatory mechanism. Yet, systematic analysis of the mechanism reveals the simplicity of the control. There are two stable forms of the enzyme; the non-active form stabilized as 1:1 complex with oxaloacetate and the active form stabilized by binding of activating ligands. This model quantitatively describes either the equilibrium level of active enzyme or the kinetics of activation-deactivation, in the presence of various concentrations of opposing effectors. The site where the regulatory ligands interact with the enzyme is not the substrate bonding site. The marked differences of dissociation constants of the same ligand from the two sites clearly distinguish between them.

This model is fully developed for simple cases where the activating ligands are dicarboxylic acids or monovalent anions. On the other hand with activators such as ATP or CoQH2, quantitation is still not at hand. This stems from the difficulties in maintaining determined, measurable, concentrations of the ligand in equilibrium with the membranal enzyme.

While in active form the histidyl flavin moity of the enzyme is reduced by physiological substrate (succinate; CoQH2). The non-active form is not reduced by these compounds, only strong reductants with low redox potential reduce the non-active enzyme. It is suggested that deactivation is a simple modulation of the redox potential of the flavin form E′ ≃ 0 mV in the active enzyme to E′ < −190 mV. The switch from one state to another might be achieved by distortion of the planar form of oxidized flavin to the bend configuration of the reduced flavin. Thus, in the active enzyme such distortion will destabilize the oxidized state of the flavin, shifting the redox potential to the higher value. The binding of oxaloacetate to the regulatory sites releases the distorting forces by relaxing the conformation of the enzyme. Consequently, the flavin assumes its planar form with the low redox potential. This assumption is supported by the spectral shifts of the flavin associated with the activation deactivation transition.

The suicidal oxidation of malate to oxaloacetate, carried by the succinate dehydrogenase, plays an important role in modulating the enzyme activity in the mitochondria. This mechanism might supply oxaloacetate for deactivation in spite of the negligible concentration of free oxaloacetate in the matrix. The oxidation of malate by the enzyme is controlled by the redox potential at the immediate vicinity of the enzyme, and is imposed by the redox level of the membranal quinone.

Finally, the modulation of succinate dehydrogenase activity is closely associated with regulation of NADH oxidation through the mutual inhibition between oxidases (Gutman, M. in Bioenergetics of Membranes, L. Packer et al., ed. Elsevier 1977, p. 165). The consequence of these interactions is the selection for the main electron donnor for the respiratory chain, during mixed substrate respiration, according to the metabolic demands from the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SDH:

succinate dehydrogenase (succinate: acceptor oxidoreductase (E.C. 1.3.99.1));

OAA:

oxaloacetate

Act:

activator

EA, EA :

active and non active forms of the enzyme, respectively

K'eq:

apparent equilibrium constant

K'd:

apparent dissociation constant

KAct, KOAA :

dissociation constant of the respective ligand from the enzyme

K'a, k'd:

the apparent rate constants of activation and deactivation, respectively

ka, kd:

the true rate constant of activation and deactivation respectively

ETP, ETPII :

non phosphorylating and phosphorylating submitochondrial particles

PMS:

phenazine methosulfate

DCIP:

dichlorophenol indophenol

CoQ:

ubiquinone

TIFA:

Thenotriflouvoacetone

NEM:

N methyl Maleimide

References

  1. Kearney, E. B., Singer, T. P. and Zastrow, N., 1955. Arch. Biochem. Biophys., 55, 580–581.

    Google Scholar 

  2. Kearney, E. B., 1957. J. Biol. Chem., 229, 363–375.

    Google Scholar 

  3. Kimura, T., Hauber, J. and Singer, T. P., 1963. Biochem. Biophys. Res. Commun., 11, 83–87.

    Google Scholar 

  4. Kimura, T., Hauber, J. and Singer, T. P., 1967. J. Biol. Chem., 242, 4987–4993.

    Google Scholar 

  5. Wojtczak, L., Wojtczak, A. B. and Ernster, L., 1969. Biochim. Biophys. Acta., 191, 10–21.

    Google Scholar 

  6. Kearney, E. B., Ackrell, B. A. C. and Mayer, M., 1972. Biochem. Biophys. Res. Commun., 49, 1115–1120.

    Google Scholar 

  7. Kearney, E. B. and Ackrell, B. A. C., 1974. In: Dynamics of Energy Transducing Membranes., Ernster, L., Eastabrook, R. and Slater, E. C. ed., Elsevier, Amsterdam, p. 111.

  8. Ackrell, B. A. C., Kearney, E. B. and Mayer, M., 1974. J. Biol. Chem., 249, 2021–2027.

    Google Scholar 

  9. Zeylemaker, W. P. and Slater, E. C., 1970. Biochem. Biophys. Acta., 132, 210–212.

    Google Scholar 

  10. Kenney, W. C., Mowery, P. C., Sang, R. L. and Singer, T. P., 1976. J. Biol. Chem. 251, 2369–2373.

    Google Scholar 

  11. Clealand, W. W., 1963. Biochim. Biophys. Acta., 67, 173–187.

    Google Scholar 

  12. Gutman, M., 1977. Biochemistry, 16, 3067–3073.

    Google Scholar 

  13. Zimakova, N. I., Shuetsov, Y. N. and Vinogradov, A. D., 1970. Biokhimiya., 35, 973–982.

    Google Scholar 

  14. Gutman, M., Kearney, E. B. and Singer, T. P., 1971. Biochem. Biophys. Res. Commun., 42, 1016–1023.

    Google Scholar 

  15. Gutman, M., Kearney, E. B. and Singer, T. P., 1971. Biochem. Biophys. Res. Commun., 44, 526–532.

    Google Scholar 

  16. Gutman, M., Kearney, E. B. and Singer, T. P., 1971. Biochemistry 10, 2726–2733.

    Google Scholar 

  17. Gutman, M., Kearney, E. B. and Singer, T. P., 1971. Biochemistry 10, 4763–4769.

    Google Scholar 

  18. La Noue, K. F., Nicklas, W. J. and Williamson, J. R., 1970. J. Biol. Chem. 245, 102–111.

    Google Scholar 

  19. Kearney, E. B., Ackrell, B. A. C., Mayer, M. and Singer, T. P., 1974. J. Biol. Chem. 249, 2016–2020.

    Google Scholar 

  20. Gutman, M., 1976. Biochemistry 15, 1324–1348.

    Google Scholar 

  21. Klasse, A. D. K. and Slater, E. C., 1972. Z. Naturforch., 27b, 1077–1078.

    Google Scholar 

  22. Salach, J. and Singer, T. P., 1974. J. Biol. Chem., 249, 3765–3767.

    Google Scholar 

  23. Ackrell, B. A. C., Kearney, E. B. and Edmondson, D., 1975. J. Biol. Chem. 250, 7114–7119.

    Google Scholar 

  24. Ackrell, B. A. C., Kearney, E. B. and Edmondson, D., 1976. In: Flavins and Flavoproteins., Singer, T. P. (ed.) Elsevier, Amsterdam, p. 522.

  25. Gutman, M. and Silman, N., 1975. Mol. Cell. Bioc. 7, 177–185.

    Google Scholar 

  26. Gutman, M. and Silman, N., 1976. In: Flavins and Flavoproteins., Singer, T. P. (ed.) Elsevier, Amsterdam, p. 537.

  27. Gutman, M. and Silman, N., 1975. Mol. Cell. Biochem., 7, 51–58.

    Google Scholar 

  28. Williamson, J. R., Smith, C. M., La Noue, K. F. and Bryla, J., 1972. In: Energy Metabolism and Regulation of Metabolic Processes in the Mitochondria., Mehlman and Hansen (eds.) Academic Press, New York, p. 185.

  29. Dervartanian, D. V. and Veeger, C., 1965. Biochim. Biophys. Acta., 105, 424–436.

    Google Scholar 

  30. Thorn, M. B., 1962. Biochem. J., 85, 116–117.

    Google Scholar 

  31. Das, N. B., 1937. Biochem. J., 31, 1116.

    Google Scholar 

  32. Dervartanian, D. V. and Veeger, C., 1964. Biochim. Biophys. Acta., 92, 233–247.

    Google Scholar 

  33. Beinert, H., Ackrell, B. A. C., Kearney, E. B. and Singer T. P., 1974. Biochem. Biophys. Res. Commun., 58, 564–571.

    Google Scholar 

  34. Beinert, H., Ackrell, B. A. C., Kearney, E. B. and Singer, T. P., 1975. Eur. J. Biochem., 54, 185–194.

    Google Scholar 

  35. Van Voorst, J. D. W., Veeger, C. and Dervartanian, D. V., 1967. Biochim. Biophys. Acta., 146, 376–379.

    Google Scholar 

  36. Priegnitz, A., Brezhevskaya, O. R. and Wojtczak, L., 1973. Biochem. Biophys. Res. Commun., 51, 1034–1041.

    Google Scholar 

  37. Ackrell, B. A. C., Kearney, E. B. and Singer, T. P., 1972. J. Biol. Chem., 252, 1582–1588.

    Google Scholar 

  38. Vinogradov, A. D., Winter, D. B. and King, T. E., 1972. Biochem. Biophys. Res. Commun., 49, 441–444.

    Google Scholar 

  39. Vinogradov, A. D., Gavrikova, E. V. and Zuersky, V. V., 1976. Eur. J. Biochem., 63, 365–371.

    Google Scholar 

  40. Singer, T. P., Kearney, E. B. and Gutman, M., 1972. In: Biochemical Regulatory Mechanisms in Eukaryotic Cells., Kun, E. and Grisolia, S. (eds.) J. Wiley, New York, p. 271.

  41. Gilles, R., Hogue, P. and Kearney, E. B., 1971. Life Sciences 10, 1421–1427.

    Google Scholar 

  42. Kearney, E. B., Mayer, M. and Singer, T. P., 1972. Biochem. Biophys. Res. Commun., 46, 531–537.

    Google Scholar 

  43. Coles, C. J., Tisdale, H. D., Kenney, W. C. and Singer, T. P., 1974. J. Biol. Chem., 249, 381–385.

    Google Scholar 

  44. Kenney, W. C., 1975. J. Biol. Chem., 250, 3089–3094.

    Google Scholar 

  45. Kean, E. A., Gutman, M. and Singer, T. P., 1971. J. Biol. Chem. 246, 2346–2353.

    Google Scholar 

  46. Mowery, P. C., Steenkamp, D. J., Ackrell, B. A. C., Singer, T. P. and White, G. A., 1977. Arch. Biochem. Biophys., 178, 495–506.

    Google Scholar 

  47. Susheela, L. and Ramasamra, T., 1972. Biochem. Biophys. Res. Commun., 46, 2087–2092.

    Google Scholar 

  48. Susheela, L. and Ramasamra, T., 1971. Biochim. Biophys. Acta., 242, 532–540.

    Google Scholar 

  49. Gregolin, C. and Scalella, P., 1965. Biochim. Biophys. Acta., 90, 187–190.

    Google Scholar 

  50. Singer, T. P., Gutman, M. and Kearney, E. B., 1972. In: Biochemistry and Biophysics of Mitochondrial Membrane, Academic Press, New York, p. 41.

  51. Cerletti, P. and Manzacchi, A., 1973. Acta. Vitaminologica et Enzymologica, 27, 5–22.

    Google Scholar 

  52. Oestreicher, G., Hague, P. and Singer, T. P., 1973. Plant Physiol., 52, 622–626.

    Google Scholar 

  53. Klingenberg, M. and Rottenberg, H., 1977. Eur. J. Biochem. 73, 125–130.

    Google Scholar 

  54. Ohnishi, T., Salerno, J. C., Winter, D. B., Lim, J., Yu, C. A., Ya, L. and King, T. E., 1976. J. Biol. Chem., 251, 2094–2104.

    Google Scholar 

  55. Ohnishi, T., Lim, J., Winter, D. B. and King, T. E., 1976. J. Biol. Chem., 251, 2105–2109.

    Google Scholar 

  56. Edmondson, D. E. and Singer, T. P., 1973. J. Biol. Chem., 248, 8144–8149.

    Google Scholar 

  57. Patek, D. R. and Evisell, W. R., 1972. Arch. Biochem. Biophys., 150, 347–354.

    Google Scholar 

  58. Kierkegaard, P., Norrestram, P., Werner, P. E., Csoregh, I., Von-Glehn, M., Karlsson, R., Leijonmarck, M., Ronnquist, O., Stensland, B., Tillberg, O. and Torbjornsson, L., 1971. In: Flavins and Flavoproteins., Kamin, H. (ed.). University Park Press, Baltimore 1971, p. 1.

  59. Urban, M. and Klingenberg, M., 1969. Eur. J. Biochem., 9, 519–525.

    Google Scholar 

  60. Gutman, M. and Silman, N., 1972. FEBS Lett., 26, 207–210.

    Google Scholar 

  61. Davis, K. A. and Hatafi, Y., 1971. Biochemistry 10, 2509–2516.

    Google Scholar 

  62. Singer, T. P., Kearney, E. B. and Ackrell, B. A. C., 1973. In: Mechanisms in Bioenergetics, Academic Press, New York, p. 485.

  63. La None, K. F., Bryla, J. and Williamson, J. R., 1972. J. Biol. Chem., 247, 667–679.

    Google Scholar 

  64. Williamson, J. R., Sofer, B., La None, K. F., Smith, C. M. and Walajtys, B. 1973. Symp. Soc. Exp. Biol. XXVII. Cambridge University Press p. 241.

  65. Singer, T. P., Gutman, M. and Kearney, E. B., 1971. FEBS Lett., 17, 11–13.

    Google Scholar 

  66. Whereat, A. F., Hull, F. E., Orishimo, M. W. and Rabinowitz, J. L., 1976. J. Biol. Chem. 242, 4013–4022.

    Google Scholar 

  67. Gutman, M., 1977. International Symposium on “Membrane Bioenergetics” Packer, L., Papageorgiou, G. C. and Trebst, A., eds. Spetsai, Greece. Elsevier Amsterdam, 1977, p. 165.

  68. Kroger, A. and Klingenberg, M., 1970. Vitamins and Hormones, 28, 533–573.

    Google Scholar 

  69. Zeylemaker, W. P., Dervartanian, D. V., Veeger, C. and Slater, E. C., 1969. Biochim. Biophys. Acta., 178, 213–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutman, M. Modulation of mitochondrial succinate dehydrogenase activity, mechanism and function. Mol Cell Biochem 20, 41–60 (1978). https://doi.org/10.1007/BF00229453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229453

Keywords

Navigation