Skip to main content
Log in

Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4′-trichloro-2′-hydroxydiphenyl ether (Irgasan® DP300) and its chlorinated derivatives

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Acute toxicity of 2,4,4′-trichloro-2′-hydroxydiphenyl ether (Irgasan® DP300) (I) and its three chlorinated derivatives, 2′,3,4,4′-tetrachloro-2-hydroxydiphenyl ether (II), 2′,4,4′,5-tetrachloro-2-hydroxydiphenyl ether (III) and 2′,3,4,4′,5-pentachloro-2-hydroxydiphenyl ether (IV), in mice were examined by intraperitoneal injection. The LD50 values of Irgasan DP300, II, III and IV were 1,090, 710, 650 and 430 mg/kg, respectively.

The percutaneous absorptions of these tritiated compounds were also examined by the application on the backs of mice. The radioactivities in most tissues reached to the maximal levels at 12 h or 18 h after dosing, which corresponded to 11–76% of the maximal levels given by the oral administration (Kanetoshi et al. 1988a). These results show the high percutaneous absorbability of Irgasan DP300 and its chlorinated derivatives.

The intraperitoneal administrations of III and IV to rats induced hepatic microsomal aminopyrine N-demethylase and aniline 4-hydroxylase activities similarly to phenobarbital. These chlorinated derivatives also increased cytochrome P-450 content, and the activities of aminopyrine N-demethylase and N-methylaniline N-demethylase in hepatic microsomes from mice. The extents of the increases were similar to those by phenobarbital and 3-methylcholanthrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atlas SA, Nebert DW (1976) Genetic association of increases in naphthalene, acetanilide, and biphenyl hydroxylation with inducible aryl hydrocarbon hydroxylase in mice. Arch Biochem Biophys 175:495–506

    Google Scholar 

  • Atlas SA, Boobis AR, Felton JS, Thougeirsson SS, Nebert DW (1977) Ontogenetic expression of poly aromatic compound-inducible monooxygenase activities and forms of cytochrome P-450 in the rabbit. Evidence for temporal control and organ specificity of two genetic regulatory systems. J Biol Chem 252:4712–4721

    Google Scholar 

  • Amemiya T, Sakai M, Ikeda K, Mori K, Suzuki S, Watanabe Y (1985) Hygienic chemical studies on household necessities (XVI). Dissolution test of Irgasan DP300 and thiabendazole used as sanitary finishing agent in commercial textile products. Ann Rep Tokyo Metr Res Lab P H 36:123–128

    Google Scholar 

  • Black JG, Howes D, Rutherford T (1975) Percutaneous absorption and metabolism of Irgasan DP300. Toxicology 3:33–47

    Google Scholar 

  • Burk MD, Thompson S, Elcombe CR, Halpert J, Haaparanta T, Mayen RT (1985) Ethoxy-, phenoxy- and benzyloxyphenoxasones and Homologues: A series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol 34:3337–3345

    Google Scholar 

  • Chow AYK, Hirsch GH, Buttar HS (1977) Nephrotoxic and hepatotoxic effects of Triclosan and Chlorhexidine in rats. Toxicol Appl Pharmacol 42:1–10

    Google Scholar 

  • Guenthner TM, Negishi M, Nebert DW (1979) Separation of Acetanilide and its hydroxylated metabolites and quantitative determination of “acetanilide 4-hydroxylase activity” by high pressure liquid chromatography. Anal Biochem 96:201–207

    Google Scholar 

  • Imai Y, Ito A, Sato R (1966) Evidence for biochemically different types of versicles in the hepatic microsomal fraction. J Biochem 60:417–428

    Google Scholar 

  • Kanetoshi A, Ogawa H, Anetai M, Katsura E, Kaneshima H (1985) Studies on the chemicals used in household necessities. I. Analysis of antimicrobial agents in fabrics. Eisei Kagaku 31:245–250

    Google Scholar 

  • Kanetoshi A, Ogawa H, Katsura E, Kaneshima H (1987) Chlorination of Irgasan DP300 and formation of dioxins from its chlorinated derivatives. J Chromatogr 389:139–153

    Google Scholar 

  • Kanetoshi A, Ogawa H, Katsura E, Okui T, Kaneshima H (1988a) Disposition and excretion of Irgasan DP300 and its chlorinated derivatives in mice. Arch Environ Contam Toxicol 17:637–644

    Google Scholar 

  • Kanetoshi A, Ogawa H, Katsura E, Kaneshima H, Miura T (1988b) Formation of polychlorinated dibenzo-p-dioxins upon combustion of commercial textile products containing 2,4,4′,-trichloro-2′-hydroxydiphenyl ether (Irgasan® DP300). J Chromatogr 442:289–299

    Google Scholar 

  • — (1988c) Formation of polychlorinated dibenzo-p-dioxin from 2,4,4′-trichloro-2′-hydroxydiphenyl ether (Irgasan® DP300) and its chlorinated derivatives by exposure to sunlight. J Chromatogr 454:145–155

    Google Scholar 

  • Litchfield JT Jr, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmac Exp Ther 96:99–113

    Google Scholar 

  • Lowry OH, Resebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Lyman FL, Furia T (1969) Toxicology of 2,4,4′-trichloro-2′-hydroxydiphenyl ether. Indust Med 38:45–52

    Google Scholar 

  • Miller TL, Lorusso DJ, Deinzer ML (1981) Induction of enzymes of the hepatic mixed-function oxidase system by hydroxychlorodiphenyl ether contaminants of technical pentachlorophenol (Abstract of 65th annual meeting of Federation of American societies for experimental biology). Fed Proc 40:630

    Google Scholar 

  • Miyazaki T, Yamagishi T, Matsumoto M (1984) Residues of 4-chloro-1-(2,4-dichlorophenoxy)-2-methoxybenzene(triclosan methyl) in aquatic biota. Bull Environ Contam Toxicol 32:227–232

    Google Scholar 

  • Nash R (1953) The colorimetric estimation of formaldehyde by means of Hantzsch reaction. Biochem J 55:416–421

    Google Scholar 

  • Nebert DW (1978) Genetic differences affecting microsomal electron transport: The Ah locus. In: Fleischer S, Packer L, (eds) Methods in enzymology vol 52 pp 226–240. Academic Press NY

    Google Scholar 

  • Nilsson C-A, Andersson K, Rappe C, Westermark S-O (1974) Chromatographic evidence for the formation of chloro-dioxins from chloro-2-phenoxyphenols. J Chromatogr 96:137–147

    Google Scholar 

  • Omura T, Sato R (1964) The carbon monooxide-binding pigment of liver microsomes. I—Evidence for tis hemoprotein nature. J Biol Chem 239:2370–2378

    Google Scholar 

  • Ohyama T (1984) Study on induction of drug metabolizing enzyme system by diphenyl ether pesticides. Rep Hokkaido Inst P H 34:8–13

    Google Scholar 

  • Onodera S, Ogawa M, Suzuki S (1987) Chemical changes of organic compounds in chlorinated water. XIII. Gas chromatographic-mass spectrometric studies of the reactions of Irgasan DP300 [5-chloro-2-(2,4-dichlorophenoxy)phenol] with chlorine in dilute aqueous solution. J Chromatogr 392:267–275

    Google Scholar 

  • Ullrich V, Weber P (1972) The O-dealkylation of 7-ethoxycoumarin by liver microsomes. Hoppe-Seyler's Z. Physiol Chem 353:1171–1177

    Google Scholar 

  • Yoshihara S, Yoshimura H (1980) Toxicological aspects of PCB and their related compounds. In: Yamane Y, Takabatake E, Uchiyama M, (eds) Toxicological aspects of environmental pollutants-or-ganic chemicals. Nannkohdo, Tokyo, pp 57–68

    Google Scholar 

  • Yuge O (1983) The antimicrobial treatments for fabrics. J Antibact Antifung Agents 11:76–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanetoshi, A., Katsura, E., Ogawa, H. et al. Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4′-trichloro-2′-hydroxydiphenyl ether (Irgasan® DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 23, 91–98 (1992). https://doi.org/10.1007/BF00226000

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226000

Keywords

Navigation