Skip to main content

Immunohistochemical Analysis of Neuronal Networks in the Nervous System of Octopus vulgaris

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

Abstract

Here we present two protocols developed to investigate the spatial distribution and relationship of neuroactive substances in the nervous tissues of cephalopod molluscs . The protocols are designed for frozen and vibratome sections of the Octopus vulgaris brain , but are easily transferable to other cephalopod species and tissues, and are also specifically designed to detect small molecules such as monoamines . One of the two protocols has been adjusted to process paraformaldehyde -fixed tissues, while the second is designed for tissues that require glutaraldehyde fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huffard CL (2013) Cephalopod neurobiology: an introduction for biologists working in other model systems. Invert Neurosci 13:11–18

    Article  PubMed  Google Scholar 

  2. Borrelli L., Fiorito G (2008) Behavioral analysis of learning and memory in cephalopods. In: Byrne JJ (Editor-in-Chief) Learning and memory: a comprehensive reference. Academic, Oxford, pp 605–627

    Google Scholar 

  3. Hochner B (2012) An embodied view of octopus neurobiology. Curr Biol 22:R887–R892

    Article  CAS  PubMed  Google Scholar 

  4. Clarke MR (1988) Evolution of recent cephalopods—a brief review. In: Clarke MR, Trueman ER (eds) The Mollusca. Paleontology and neontology of cephalopods. Academic, San Diego, pp 331–340

    Chapter  Google Scholar 

  5. Grasso FW, Basil JA (2009) The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behav Evol 74:231–245

    Article  PubMed  Google Scholar 

  6. Brown ER, Piscopo S (2013) Synaptic plasticity in cephalopods; more than just learning and memory? Invert Neurosci 13:35–44

    Article  PubMed  Google Scholar 

  7. Borrelli L (2007) Testing the contribution of relative brain size and learning capabilities on the evolution of Octopus vulgaris and other cephalopods [dissertation]. Stazione Zoologica Anton Dohrn, Napoli, Italy; Open University, London, UK, 451 p

    Google Scholar 

  8. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Article  CAS  Google Scholar 

  9. Young JZ (1963) The number and sizes of nerve cells in Octopus. Proc Zool Soc Lond 140:229–254

    Article  Google Scholar 

  10. Nixon M, Young JZ (2003) The brains and lives of Cephalopods. Oxford University, New York, 392 p

    Google Scholar 

  11. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford University Press, London, 690 p

    Google Scholar 

  12. Fiorito G, Scotto P (1992) Observational learning in Octopus vulgaris. Science 256:545–547

    Article  CAS  PubMed  Google Scholar 

  13. Edelman DB, Seth AK (2009) Animal consciousness: a synthetic approach. Trends Neurosci 32:476–484

    Article  CAS  PubMed  Google Scholar 

  14. Laschi C, Cianchetti M, Mazzolai B et al (2012) Soft robot arm inspired by the octopus. Adv Robot 26:709–727

    Article  Google Scholar 

  15. Fiorito G, Affuso A, Anderson DB et al (2014) Cephalopods in neuroscience: regulations, research and the 3Rs. Invert Neurosci 14:13–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Smith JA, Andrews PLR, Hawkins P et al (2013) Cephalopod research and EU directive 2010/63/EU: requirements, impacts and ethical review. J Exp Mar Biol Ecol 447:31–45

    Article  Google Scholar 

  17. Catterall WA, Raman IM, Robinson HPC et al (2012) The Hodgkin-Huxley Heritage: from channels to circuits. J Neurosci 32:14064–14073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Vandenberg JI, Waxman SG (2012) Hodgkin and Huxley and the basis for electrical signalling: a remarkable legacy still going strong. J Physiol 590:2569–2570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Forsythe ID, Wu CL, Borst JGG (2013) Size matters: formation and function of giant synapses. J Physiol 591:3123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schwiening CJ (2012) A brief historical perspective: Hodgkin and Huxley. J Physiol 590:2571–2575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Young JZ (1995) Multiple matrices in the memory system of Octopus. In: Abbott JN, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 431–443

    Google Scholar 

  22. Young JZ (1991) Computation in the learning system of cephalopods. Biol Bull 180:200–208

    Article  Google Scholar 

  23. Hochner B, Shomrat T, Fiorito G (2006) The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull 210:308–317

    Article  PubMed  Google Scholar 

  24. Altman JS (1971) Control of accept and reject reflexes in the octopus. Nature 229:204–206

    Article  CAS  PubMed  Google Scholar 

  25. Sumbre G, Fiorito G, Flash T et al (2006) Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr Biol 16:767–772

    Article  CAS  PubMed  Google Scholar 

  26. Sumbre G, Fiorito G, Flash T et al (2005) Motor control of flexible octopus arms. Nature 433:595–596

    Article  CAS  PubMed  Google Scholar 

  27. Sumbre G, Gutfreund Y, Fiorito G et al (2001) Control of octopus arm extension by a peripheral motor program. Science 293:1845–1848

    Article  CAS  PubMed  Google Scholar 

  28. Sanders GD (1975) The cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning. Cephalopods and echinoderms. Plenum, New York, NY, pp 1–101

    Chapter  Google Scholar 

  29. Hochner B, Brown ER, Langella M et al (2003) A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. J Neurophysiol 90:3547–3554

    Article  PubMed  Google Scholar 

  30. Gray EG, Young JZ (1964) Electron microscopy of synaptic structure of octopus brain. J Cell Biol 21:87–103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Messenger JB (1996) Neurotransmitters of cephalopods. Invert Neurosci 2:95–114

    Article  CAS  Google Scholar 

  32. Messenger JB (1979) The nervous system of Loligo IV. The peduncle and olfactory lobes. Phil Trans R Soc Lond B 285:275–309

    Article  Google Scholar 

  33. Ponte G (2012) Distribution and preliminary functional analysis of some modulators in the cephalopod mollusc Octopus vulgaris [dissertation]. Università della Calabria, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy, 110 p

    Google Scholar 

  34. Tansey EM (1979) Neurotransmitters in the cephalopod brain. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 64:173–182

    Article  Google Scholar 

  35. Tansey EM (1978) A histochemical study of the cephalopod brain [dissertation]. University of Sheffield, UK, 169 p

    Google Scholar 

  36. Kime DE, Messenger JB (1990) Monoamines in the cephalopod CNS—an HPLC analysis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 96:49–57

    Article  Google Scholar 

  37. Ponte G, Dröscher A, Fiorito G (2013) Fostering cephalopod biology research: past and current trends and topics. Invert Neurosci 13:1–9

    Article  PubMed  Google Scholar 

  38. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Exp Biol Med 47:200–202

    Article  CAS  Google Scholar 

  39. Uemura T, Yamashita T, Haga C et al (1987) Localization of serotonin-immunoreactivity in the central nervous system of Octopus vulgaris by immunohistochemistry. Brain Res 406:73–86

    Article  CAS  PubMed  Google Scholar 

  40. Huisman H, Wynveen P, Setter PW (2010) Studies on the immune response and preparation of antibodies against a large panel of conjugated neurotransmitters and biogenic amines: specific polyclonal antibody response and tolerance. J Neurochem 112:829–841

    Article  CAS  PubMed  Google Scholar 

  41. Boyer C, Maubert E, Charnay Y et al (2007) Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 1133:53–66

    Article  CAS  PubMed  Google Scholar 

  42. Kononenko NL, Wolfenberg H, Pfluger HJ (2009) Tyramine as an independent transmitter and a precursor of octopamine in the Locust central nervous system: an immunocytochemical study. J Comp Neurol 512:433–452

    Article  CAS  PubMed  Google Scholar 

  43. Grimaldi AM, Agnisola C, Fiorito G (2007) Using ultrasound to estimate brain size in the cephalopod Octopus vulgaris Cuvier in vivo. Brain Res 1183:66–73

    Article  CAS  PubMed  Google Scholar 

  44. Ponte G, Fiorito G, Edelman D (2010) Distribution of GABAergic neuronal populations in the nervous system of Octopus vulgaris: an immunofluorescence study. Annual meeting society for neuroscience San Diego, USA, 17–21 Nov 2010

    Google Scholar 

  45. Ponte G, Edelman D, Fiorito G (2011) Anti-Hrp epitope in Octopus vulgaris neural tissue: the first among lophtrochozoans. J Shellfish Res 30:1018

    Google Scholar 

  46. Hobbs MJ, Young JZ (1973) Cephalopod cerebellum. Brain Res 55:424–430

    Article  CAS  PubMed  Google Scholar 

  47. Messenger JB, Tansey EM (1979) Aminergic fluorescence in the cephalopod cerebellum. J Physiol 287:7–8

    Google Scholar 

  48. Messenger JB, Cornwell CJ, Reed CM (1997) l-glutamate and serotonin are endogenous in squid chromatophore nerves. J Exp Biol 200:3043–3054

    CAS  PubMed  Google Scholar 

  49. Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comp Neurol 398:1–12

    Article  PubMed  Google Scholar 

  50. Palumbo A, Di Cosmo A, Poli A et al (1999) A calcium/calmodulin-dependent nitric oxide synthase, NMDAR2/3 receptor subunits, and glutamate in the CNS of the cuttlefish Sepia officinalis: localization in specific neural pathways controlling the inking system. J Neurochem 73:1254–1263

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki H, Yamamoto T, Inenaga M et al (2000) Galanin-immunoreactive neuronal system and colocalization with serotonin in the optic lobe and peduncle complex of the octopus (Octopus vulgaris). Brain Res 865:168–176

    Article  CAS  PubMed  Google Scholar 

  52. Di Cosmo A, Di Cristo C, Palumbo A et al (2000) Nitric oxide synthase (NOS) in the brain of the cephalopod Sepia officinalis. J Comp Neurol 428:411–427

    Article  PubMed  Google Scholar 

  53. Loi PK, Tublitz NJ (2000) Roles of glutamate and FMRFamide-related peptides at the chromatophore neuromuscular junction in the cuttlefish, Sepia officinalis. J Comp Neurol 420:499–511

    Article  CAS  PubMed  Google Scholar 

  54. Shigeno S, Yamamoto M (2002) Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). J Morphol 254:65–80

    Article  PubMed  Google Scholar 

  55. Di Cosmo A, Di Cristo C, Paolucci M (2002) A estradiol-17 beta receptor in the reproductive system of the female of Octopus vulgaris: characterization and immunolocalization. Mol Reprod Dev 61:367–375

    Article  PubMed  Google Scholar 

  56. Chrachri A, Williamson R (2003) Modulation of spontaneous and evoked EPSCs and IPSCs in optic lobe neurons of cuttlefish Sepia officinalis by the neuropeptide FMRF-amide. Eur J Neurosci 17:526–536

    Article  PubMed  Google Scholar 

  57. Lehr T, Schipp R (2004) Serotonergic regulation of the central heart auricles of Sepia officinalis L. (Mollusca, Cephalopoda). Comp Biochem Physiol A Mol Integr Physiol 138:69–77

    Article  PubMed  Google Scholar 

  58. Iwakoshi-Ukena E, Ukena K, Takuwa-Kuroda K et al (2004) Expression and distribution of octopus gonadotropin-releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry. J Comp Neurol 477:310–323

    Article  PubMed  Google Scholar 

  59. Fiore G, Poli A, Di Cosmo A et al (2004) Dopamine in the ink defence system of Sepia officinalis: biosynthesis, vesicular compartmentation in mature ink gland cells, nitric oxide (NO)/cGMP-induced depletion and fate in secreted ink. Biochem J 378:785–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Altobelli GG, Cimini V (2007) Calretinin distribution in the octopus brain: an immunohistochemical and in situ hybridization histochemical analysis. Brain Res 1132:71–77

    Article  CAS  PubMed  Google Scholar 

  61. Wollesen T, Loesel R, Wanninger A (2008) FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides. Acta Biol Hung 59:111–116

    Article  PubMed  Google Scholar 

  62. Mackie GO (2008) Immunostaining of peripheral nerves and other tissues in whole mount preparations from hatchling cephalopods. Tissue Cell 40:21–29

    Article  CAS  PubMed  Google Scholar 

  63. D'Este L, Kimura S, Casini A et al (2008) First visualization of cholinergic cells and fibers by immunohistochemistry for choline acetyltransferase of the common type in the optic lobe and peduncle complex of Octopus vulgaris. J Comp Neurol 509:566–579

    Article  PubMed  Google Scholar 

  64. Wollesen T, Loesel R, Wanninger A (2009) Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 179:63–67

    Article  CAS  PubMed  Google Scholar 

  65. Di Cristo C, De Lisa E, Di Cosmo A (2009) Control of GnRH expression in the olfactory lobe of Octopus vulgaris. Peptides 30:538–544

    Article  PubMed  Google Scholar 

  66. Di Cristo C, De Lisa E, Di Cosmo A (2009) GnRH in the brain and ovary of Sepia officinalis. Peptides 30:531–537

    Article  PubMed  Google Scholar 

  67. Bardou I, Maubert E, Leprince J et al (2009) Distribution of oxytocin-like and vasopressin-like immunoreactivities within the central nervous system of the cuttlefish, Sepia officinalis. Cell Tissue Res 336:249–266

    Article  CAS  PubMed  Google Scholar 

  68. Castillo MG, Goodson MS, McFall-Ngai M (2009) Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Dev Comp Immunol 33:69–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517:539–549

    Article  CAS  PubMed  Google Scholar 

  70. Wollesen T, Degnan BM, Wanninger A (2010) Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 342:161–178

    Article  CAS  PubMed  Google Scholar 

  71. Hu MY, Sucre E, Charmantier-Daures M et al (2010) Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res 339:571–583

    Article  CAS  PubMed  Google Scholar 

  72. Wollesen T, Sukhsangchan C, Seixas P et al (2012) Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273:776–790

    Article  CAS  PubMed  Google Scholar 

  73. Wollesen T, Nishiguchi MK, Seixas P et al (2012) The VD1/RPD2 alpha 1-neuropeptide is highly expressed in the brain of cephalopod mollusks. Cell Tissue Res 348:439–452

    Article  CAS  PubMed  Google Scholar 

  74. Casini A, Vaccaro R, D'Este L et al (2012) Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris. Eur J Histochem 56:215–222

    CAS  Google Scholar 

  75. Lee YH, Chang YC, Yan HY et al (2013) Early visual experience of background contrast affects the expression of NMDA-like glutamate receptors in the optic lobe of cuttlefish, Sepia pharaonis. J Exp Mar Biol Ecol 447:86–92

    Article  CAS  Google Scholar 

  76. Kobayashi S, Takayama C, Ikeda Y (2013) Distribution of glutamic acid decarboxylase immunoreactivity within the brain of oval squid Sepioteuthis lessoniana. Aquat Biol 19:97–109

    Article  Google Scholar 

  77. Burbach JP, Grant P, Hellemons AJCG et al (2014) Differential expression of the FMRF gene in adult and hatchling stellate ganglia of the squid Loligo pealei. Biol Open 3:50–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Sakaue Y, Bellier JP, Kimura S et al (2014) Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 219:323–341

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Fiorito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ponte, G., Fiorito, G. (2015). Immunohistochemical Analysis of Neuronal Networks in the Nervous System of Octopus vulgaris . In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics