Skip to main content
Log in

Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: An alternative method for generating a high-resolution solution structure

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MC:

Monte Carlo

rMC:

restrained Monte Carlo

MD:

molecular dynamics

rMD:

restrained molecular dynamics

DG:

distance geometry

EM:

energy minimization

2D NOE:

two-dimensional nuclear Overhauser effect

DQF-COSY:

double-quantum-filtered correlation spectroscopy

RMSD:

root-mean-square deviation

References

  • Altona, C. and Sundaralingam, M. (1972) J. Am. Chem. Soc., 94, 8205–8212.

    Google Scholar 

  • Baleja, J.D., Pon, R.T. and Sykes, B.D. (1990) Biochemistry, 29, 4828–4839.

    Google Scholar 

  • Borgias, B.A. and James, T.L. (1988) J. Magn. Reson., 79, 493–512.

    Google Scholar 

  • Borgias, B.A. and James, T.L. (1989) Methods Enzymol., 176, 169–183.

    Google Scholar 

  • Borgias, B.A. and James, T.L. (1990) J. Magn. Reson., 87, 475–487.

    Google Scholar 

  • Braun, W. (1987) Q. Rev. Biophys., 19, 115–157.

    Google Scholar 

  • Brünger, A.T. and Karplus, M. (1991) Acc. Chem. Res., 24, 54–61.

    Google Scholar 

  • Chuprina, V.P., Khutorskii, V.E. and Poltev, V.I. (1981) Stud. Biophys., 85, 81–88.

    Google Scholar 

  • De Leeuw, F.A.A.M., Van Beuzekom, A. and Altona, C. (1983) J. Comp. Chem., 4, 438–448.

    Google Scholar 

  • Dickerson, R.E., Bansal, M., Calladine, C.R., Diekmann, S., Hunter, W.N., Kennard, O., Lavery, R., Nelson, H.J.C., Saenger, W., Shakked, Z., Sklenar, H., Soumpasis, D.M., Von Kitzing, E., Wang, A.-H.-J. and Zhurkin, V.B. (1989) EMBO J., 8, 1–4.

    Google Scholar 

  • Gorin, A.A., Ulyanov, N.B. and Zhurkin, V.B. (1990) Molek. Biol. (Eng. transl.), 24, 1036–1047.

    Google Scholar 

  • Gupta, G., Bansal, M. and Sasisekharan, V. (1980) Proc. Natl. Acad. Sci. USA, 77, 6486–6490.

    Google Scholar 

  • Haasnoot, C.A.G., De Leeuw, F.A.A.M. and Altona, C. (1980) Tetrahedron, 36, 2783–2792.

    Google Scholar 

  • Havel, T.F., Kuntz, I.D. and Crippen, G.M. (1983) Bull. Math. Biol., 45, 665–720.

    Google Scholar 

  • James, T.L. (1991) Curr. Opin. Struct. Biol., 1, 1042–1053.

    Google Scholar 

  • James, T.L., Gochin, M., Kerwood, D.J., Pearlman, D.A., Schmitz, U. and Thomas, P.D. (1991) In Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy (Eds, Hoch, J.C., Poulsen, F.M. and Redfield, C.) Plenum Press, New York, pp. 331–347.

    Google Scholar 

  • Keepers, J.W. and James, T.L. (1984) J. Magn. Reson., 57, 404–426.

    Google Scholar 

  • Kerwood, D.J., Zon, G. and James, T.L. (1991) Eur. J. Biochem., 197, 583–595.

    Google Scholar 

  • Kim, S.-G. and Reid, B.R. (1992) Biochemistry, 31, 12103–12116.

    Google Scholar 

  • Kumar, A., James, T.L. and Levy, G.C. (1992) Isr. J. Chem., 32, 257–261.

    Google Scholar 

  • Lavery, R. (1988) In DNA Bending and Curvature (Eds, Olson, W.K., Sarma, M.H., Sarma, R.H. and Sundaralingam, M.) Vol. 3, Adenine Press, New York, pp. 191–211.

    Google Scholar 

  • Levy, R.M., Bassolino, D.A., Kitchen, D.B. and Pardi, A. (1989) Biochemistry, 28, 9361–9372.

    Google Scholar 

  • Liu, H., Thomas, P.D. and James, T.L. (1992) J. Magn. Reson., 98, 163–175.

    Google Scholar 

  • Mauffret, O., Hartmann, B., Convert, O., Lavery, R. and Fermandjian, S. (1992) J. Mol. Biol., 227, 852–875.

    Google Scholar 

  • McCammon, J.A. and Harvey, S.C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Metropolis, N.A., Rosenbluth, A.M., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) J. Chem. Phys., 21, 1087–1092.

    Google Scholar 

  • Mujeeb, A., Kerwin, S.M., Egan, W., Kenyon, G.L. and James, T.L. (1992) Biochemistry, 31, 9325–9338.

    Google Scholar 

  • Nikonowicz, E. and Gorenstein, D.G. (1992) J. Am. Chem. Soc., 114, 7494–7503.

    Google Scholar 

  • Nilges, M., Clore, G.M., Gronenborn, A., Piel, N. and McLaughlin, L.W. (1987) Biochemistry, 26, 3734–3744.

    Google Scholar 

  • Nilsson, L., Clore, G.M., Gronenborn, A., Brünger, A.T. and Karplus, M. (1986) J. Mol. Biol., 188, 455–475.

    Google Scholar 

  • Olson, W.K. (1977) Proc. Natl. Acad. Sci. USA, 74, 1775–1779.

    Google Scholar 

  • Oshiro, C.M., Thomason, J.F. and Kuntz, I.D. (1991) Biopolymers, 31, 1049–1064.

    Google Scholar 

  • Pearlman, D.A. and Kollman, P.A. (1991) J. Mol. Biol., 220, 457–479.

    Google Scholar 

  • Pearlman, D.A., Case, D.A., Caldwell, J., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1991) AMBER 4.0, University of California, San Francisco.

    Google Scholar 

  • Poltev, V.I. and Shulyupina, N.V. (1986) J. Biomol. Struct. Dyn., 3, 739–765.

    Google Scholar 

  • Ripoll, D.R. and Ni, F. (1992) Biopolymers, 32, 359–365.

    Google Scholar 

  • Ryckaert, J.P., Cicotti, G. and Berendsen, H.J.C. (1977) J. Comp. Phys., 23, 327–341.

    Google Scholar 

  • Schmitz, U., Kumar, A. and James, T.L. (1992a) J. Am. Chem. Soc., 114, 10654–10656.

    Google Scholar 

  • Schmitz, U., Sethson, I., Egan, W. and James, T.L. (1992b) J. Mol. Biol., 227, 510–531.

    Google Scholar 

  • Schmitz, U., Ulyanov, N.B., Kumar, A. and James, T.L. (1993) J. Mol. Biol., in press.

  • Stolarski, R., Egan, W. and James, T.L. (1992) Biochemistry, 31, 7027–7042.

    Google Scholar 

  • Thomas, P.D., Basus, V.J. and James, T.L. (1991) Proc. Natl. Acad. Sci. USA, 88, 1237–1241.

    Google Scholar 

  • Torda, A.E., Scheek, R.M. and Van Gunsteren, W.F. (1990) J. Mol. Biol., 214, 223–235.

    Google Scholar 

  • Ulyanov, N.B. and Zhurkin, V.B. (1982) Molek. Biol. (Eng. transl.), 16, 857–867.

    Google Scholar 

  • Ulyanov, N.B. and Zhurkin, V.B. (1984) J. Biomol. Struct. Dyn., 2, 361–385.

    Google Scholar 

  • Ulyanov, N.B., Gorin, A.A. and Zhurkin, V.B. (1989) In Proc. Int. conf. Supercomp. '89: Supercomputer Applications (Eds, Kartashev, L.P. and Kartashev, S.I.) Int. Supercomputing Inst., Inc., St. Petersburg, Florida, pp. 368–370.

    Google Scholar 

  • Ulyanov, N., Gorin, A.A., Zhurkin, V.B., Chen, B.-C., Sarma, M.H. and Sarma, R.H. (1992) Biochemistry, 31, 3918–3930.

    Google Scholar 

  • Van Gunsteren, W.F., Boelens, R., Kaptein, R. and Zuiderweg, E.R.P. (1983) In Nucleic Acid Conformation and Dynamics, NATO/CECAM Workshop Report (Ed. Olson, W.K.) Orsay, pp. 79–82.

  • Weisz, K., Shafer, R.H., Egan, W. and James, T.L. (1992) Biochemistry, 31, 7477–7487.

    Google Scholar 

  • Zhurkin, V.B., Lysov, Y.P. and Ivanov, V.I. (1978) Biopolymers, 17, 377–412.

    Google Scholar 

  • Zhurkin, V.B., Poltev, V.I. and Florentiev, V.L. (1981) Molek. Biol. (Eng. transl.), 14, 882–895.

    Google Scholar 

  • Zhurkin, V.B., Ulyanov, N.B., Gorin, A.A. and Jernigan, R.L. (1991) Proc. Natl. Acad. Sci. USA, 88, 7046–7050.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulyanov, N.B., Schmitz, U. & James, T.L. Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: An alternative method for generating a high-resolution solution structure. J Biomol NMR 3, 547–568 (1993). https://doi.org/10.1007/BF00174609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174609

Keywords

Navigation