Skip to main content
Log in

The singular fate of genetics in the history of French biology, 1900–1940

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Conclusion

In this study we have examined the reception of Mendelism in France from 1900 to 1940, and the place of some of the extra-Mendelian traditions of research that contributed to the development of genetics in France after World War II. Our major findings are:

  1. (1)

    Mendelism was widely disseminated in France and thoroughly understood by many French biologists from 1900 on. With the notable exception of Lucien Cuénot, however, there were few fundamental contributions to the Mendelian tradition, and virtually none from about 1915 to the midthirties. Prior to 1900, Cuénot's work was already marked by a striking interest in physiological mechanisms; his physiological preoccupations played a considerable role in his account of the inheritance of coat color and of susceptibility to tumors in mice. His analysis of the roles of the many genes involved in pigment formation was developed with an eye to one of the first models of the metabolic reactions involved. It yielded one of the earliest suggestions that the steps controlled by single genes involve enzymes as the products of genes.

  2. (2)

    The inflexible structure of the French universities played an important role in discouraging research in genetics and in the failure to train the post-World War I generation in that discipline.

  3. (3)

    During this period the disciplines of physiology, microbiology, and causal embryology were dominant in French experimental biology. The issues that were most prominent within these disciplines—differentiation and development, regulation of growth and morphology, infection and assimilation—were not easily treated within genetics. The failure of Mendelism to resolve a variety of legitimate explanatory issues to the satisfaction of serious investigators trained in the dominant French disciplines also contributed to the failure of Mendelism to penetrate French science. The violent anti-Mendelian polemics put forward by many of the most committed neo-Lamarckians raised many of the same issues regarding the supposed insufficiency of Mendelism. Cuénot's reluctance to encourage his students to pursue careers in genetics illustrates the compound nature of the resistance.

Despite the absence of a developed tradition of Mendelian research, a French school of molecular genetics had developed by the 1950s. It flourished outside the university system at the Institut Pasteur, the Institut de Biologie physico-chimique, and the CNRS (though some of its leading figures had university connections), and it was only beginning to enter into university curricula. The most important indigenous research that informed the new tradition was that of Eugène Wollman on “paraheredity” of phage infection and lysogeny, of André Lwoff on the physiology and nutritional requirements of protozoa and bacteria, and the embryologically influenced genetic investigations of Boris Ephrussi. The conceptual and methodological resources of the French school were enriched by this background; a full understanding of the products of the fifties, we believe, requires a proper appreciation of these antecedents. Molecular genetics in France grew out of the Pasteurian tradition of microbiology and the highly developed tradition of causal embryology as modified by Ephrussi. Both of these traditions were extra-Mendelian and not anti-Mendelian, but they both shared a number of the problems and assumptions that were at the center of the extremist resistance to Mendelism. In many respects, then, it is more fruitful to see the entry of French biology into molecular genetics as a development of its microbial-physiological and causal-embryological traditions, coopting the tools and techniques of genetics, rather than the other way around.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, D. Buican, Histoire de la génétique et de l'évolutionnisme en France (Paris: Presses Universitaires de France, 1984); or, for a less thorough treatment, the articles by E. Boesiger, E. Mayr, and C. Limoges on the evolutionary synthesis in France in The Evolutionary Synthesis, ed. E. Mayr and W. Provine (Cambridge, Mass.: Harvard University Press, 1980).

    Google Scholar 

  2. See, for example, the last paragraph of the chapter on “The Factorial Hypothesis” of T. H. Morgan, A. H. Sturtevant, H. J. Muller, and C. B. Bridges, The Mechanism of Mendelian Heredity (New York: Henry Holt, 1915 and 1922), in support of the claim that “[a]lthough Mendel's law does not explain the phenomena of development, and does not pretend to explain them, it stands as a scientific explanation of heredity, because it fulfills all the requirements of any causal explanation” (quoted from the revised ed., p. 281).

    Google Scholar 

  3. Until 1917 called Bulletin scientifique de la France et de la Belgique.

  4. The most important of these are Ph. L'Héritier, A. Tetry, and R. Wurmser. We also interviewed a number of figures from the next generation, including J. Beisson, G. Cohen, J. M. Goux, C. Petit, P. Slonimski, M. Weiss, Élie Wollman, and a few Americans who spent a year or more in French laboratories in the 1940s or 1950s.

  5. H.de Vries, “Sur la loi de disjonction de hybrides”, Comp. Rend. Acad. Sci., 130 (1900), 845–847. See also idem: “Sur les unités des caractères spécifiques,” Rev. Gén. Bot., 12 (1900), 83–90; “Das Spaltungsgesetz der Bastarde,” Ber. deut. botan. Gesell., 18 (1900), 83–90; and “La loi Mendel et les caractères constants des hybrides,” Comp. Rend. Acad. Sci., 136 (1903), 321–323.

    Google Scholar 

  6. See L. Cuénot, “La loi de Mendel et l'hérédité de la pigmentation chez les souris”, Arch. Zool. Exp. Gén., 3rd ser. 10 (1902), 27–30; “Sur quelques applications de la loi de Mendel,” Comp. Rend. Soc. Biol., 4 (1902), 397–398; “Les recherches expérimentales sur l'hérédité,” Ann. Biol., 7 (1902), 58–77; “L'hérédité de la pigmentation chez les souris (2ème note),” Arch. Zool. Exp. Gén., 4th ser., 1 (1903), 33–41; “Hérédité de la pigmentation chez les Souris noires,” Comp. Rend. Soc. Biol., 5 (1903), 298–299; “Transmission héréditaire de pigmentation par les Souris albinos,” ibid., pp. 299–301; “Hypothèse sur l'hérédité des couleurs dans le croisement des Souris noires, grises et blanches,” ibid., pp. 301–302; “L'hérédité de la pigmentation chez les Souris (3ème note),” Arch. Zool. Exp. Gén., 4th ser., 2 (1904), 45–56; “Un paradoxe héréditaire chez les Souris,” Comp. Rend. Soc. Biol., 6 (1904), 1050–52; “Les recherches expérimentales sur l'hérédité mendélienne.” Rev. Gén. Sci. Pures Appl., 15 (1904), 303–310; “Les races pures et leurs combinaisons chez les Souris (4ème note),” Arch. Zool. Exp. Gén., 4th ser., 3 (1905), 123–132; “L'hérédité de la pigmentation chez les Souris (5ème note),” ibid., 6 (1907), 1–14; “Sur quelques anomalies apparentes des proportions mendéliennes (6ème note),” ibid., 7 (1908), 7–15; “Les déterminants de la couleur chez les Souris: Étude comparative (7ème note),” ibid., 9 (1911), 40–55; “L'hérédité chez les Souris,” Verhandl. naturf. Ver. Brünn, 49 (1911), 1–9. For an English article, see L. Cuénot, “Heredity,” Ann. Rep. Smiths. Inst., 1906, pp. 335–344. For references to Cuénot's work on the inheritance of cancer in mice, see below, n. 38.

    Google Scholar 

  7. See the report in Comp. Rend. Acad. Sci., 153 (1911), 1337–42.

    Google Scholar 

  8. The complete title is L'Année Biologique. Comptes rendus annuels des travaux de Biologie générale. The first volume (imprint 1895) was published in 1897.

  9. In the preface to the first volume, Delage considered the new periodical to be “the natural consequence” of his book on heredity and the major problems of general biology (La structure du protoplasma et les théories sur l'hérédité et les grands problèmes de la biologie générale [Paris: Reinwald & Cie, 1895]): Les personnes à qui ce livre est resté étranger pourront se demander s'il était bien nécessaire de fonder un nouveau recueil d'analyses et si nous n'avions pas assez de nombreux périodiques de ce genre qui existent dans diverses langues. Nous pourrions répondre qu'il n'en existait pas en français, et c'est un fait à prendre en considération. Mais nous n'aurions pas cependant trouvé là une raison suffisante: ce qui nous a décidé, c'est qu'on ne trouve pas actuellement nulle part, dans aucune langue, les renseignements qu'il doit contenir. Il diffère en effet des ouvrages similaires par son but que son titre n'indique qu'à moitié et qui est non pas tant d'analyser ce qui a trait aux faits généraux de la biologie que de trier ce qui, dans la biologie générale, vise l'explication des phénomènes. (Ann. Biol., 1 (1895), II)

  10. See note 5 above.

  11. Ann. Biol., 4 (1899–1900), 40–41.

  12. Ann. Biol., 4 (1899–1900), 341–342.

  13. L. Cuénot, “Les recherches expérimentales sur l'hérédité”, Ann. Biol., 7 (1902), 58–77.

    Google Scholar 

  14. G. Mendel: “Recherches sur les hybrides végétaux” and “Sur quelques hybrides d'Hieracium obtenus par fécondation artificielle”, Bull. Sci. Fr. Belg., 41 (1907), 401–413, 414–419.

    Google Scholar 

  15. A. Hagedoorn, “Les facteurs génétiques dans le développement des organismes”, Bull. Sci. Fr. Belg., 46 (1912), 101–122.

    Google Scholar 

  16. E. Rabaud, “Lamarckisme et Mendélisme”, Bull. Sci. Fr. Belg., 46 (1912), pp. 123–138.

    Google Scholar 

  17. A. Delcourt and E. Guyénot, “Génétique et milieu. Nécessité de la détermination des conditions; sa possibilité chez les drosophiles. Technique”, Bull. Sci. Fr. Belg., 45 (1911), 249–322; E. Guyénot, “Action des rayons U.V. sur Drosophila ampelophila Löw,” ibid., 48 (1914), 160–169; and E. Guyénot, “Recherches expérimentales sur la vie d'un organisme en fonction du milieu,” ibid., 51 (1917), 1–330.

    Google Scholar 

  18. Although the official English title was “Fourth International Conference [not Congress] on Genetics,” the first three (1899, 1902, and 1906) were called “Conferences on Hybridisation and Cross-Breeding.” In the Proceedings, the third was renamed as the “Third International Conference on GENETICS; Hybridization (the Cross-Breeding of Genera or Species), The Cross-Breeding of Varieties, and General Plant Breeding” — thanks to a speech by Bateson in which he argued for his newly coined term, “genetics”, as a means of reflecting the revolution occasioned by the rediscovery of Mendelism and the allied changes in the study of heredity. In spite of the numbering of the Paris conference, therefore, it could well be considered as the first or second international congress of genetics. This surely should be taken into account in evaluating the reception of the new science among French biologists. We are grateful to William B. Provine for calling the early history of these congresses to our attention and providing us with information about them.

  19. For de Vries and Cuénot, see above, notes 5 and 6. For Janssens, see “La théorie de la chiasmatypie, nouvelle interpretation des cinèses de maturation,” Cellule, 25 (1909), 389–406.

  20. Compared to some countries this is quite late. In Germany, for instance, Erwin Baur became Professor of Genetics at the Landwirtschaftliche Hochschule in Berlin in 1913 and headed the Institut für Vererbungsforschung from 1921 on in Berlin-Dahlem, while in Russia Aleksandr Serebrovsky was named to a chair of genetics at Moscow in 1930. A quick glance at Provine's table of centers of genetic research in the mid-twenties (pp. 52–53 of “Genetics”, in Mayr and Provine, Evolutionary Synthesis, [above, n.1] provides ample corroboration of the institutional delays in France).

  21. Our information about Cuénot and Blaringhem comes from interviews with A. Tetry and J. M. Goux, respectively. Regarding Caullery, see Ph. L'Héritier, “Souvenirs d'un généticien”, Rev. Synth.103–104 (1981), 336.

    Google Scholar 

  22. Ph. L'Héritier, Étude de variations quantitatives au sein d'un espèce: Drosophila melanogaster [These de doctorat es sciences] (Paris: Éditions des Archives de Zoologie expérimentale, 1937). See also our account of Guyénot's thesis in section 1.3 below.

  23. Although we have not undertaken a systematic survey, to the best of our knowledge there were only two non-French citizens called to chairs in the entire history of the French universities until the 1950s — namely Erasmus and Jean Piaget.

  24. See, e.g., W. Bateson and E. R. Saunders, “Experimental Studies in the Physiology of Heredity”, Rep. Evol. Comm. Roy. Soc., 1 (1902), 1–160.

    Google Scholar 

  25. L. Cuénot, “La loi de Mendel” (above, n. 6), and an article of the same title with virtually the same text in Comp. Rend. Acad. Sci., 134 (1902), 779–781.

    Google Scholar 

  26. Cuénot, 3ème, 5ème, and 7ème notes.

  27. Cuénot, “5ème note”, p. 10.

  28. Although implicit as early as the “2ème note”, this is explicitly stated in the “5ème note”, p. 3.

  29. Ibid.

  30. Ibid., p. 10.

  31. W. Castle and C. C. Little, “On a Modified Mendelian Ratio among Yellow Mice”, Science, 32 (1910), 868–870. Castle and Little were building, in turn, on Baur's analysis of lethal genes in Antirrhinum; cf. Erwin Baur, “Untersuchungen über die Erblichkeitstverhältnisse einer nur in Bastardform lebensfähige Sippe von Antirrhinum majus”, Ber. deut. botan. Gesell., 25 (1907), 442–454.

    Google Scholar 

  32. Cuénot, “7ème note”, p. 47: “il paraît bien que les gamètes porteurs du déterminant J [Jaune, for yellow] forment, lors qu'ils sont unis, un zygote JJ qui n'est pas viable et meurt sans se développer; il n'y a que les zygotes renfermant J dominant un autre déterminant allélomorphe (G′, G ou N) qui peuvent évoluer”.

  33. Cuénot reported these results many years later in “Génétique des Souris”, Bibl. Genet., 4 (1928), 179–242, ascribing them to H. Ibsen and E. Steigleder, “Evidence for the Death in Utero of the Homozygous Yellow Mouse”, Amer. Nat., 51 (1917), 740–752, and to W. Kirkham, “The Fate of Homozygous Yellow Mice”, J. Genet., 28 (1919), 125–135.

  34. See, for example, his treatment of Japanese waltzing mice in “6ème note”, pp. 12–14.

  35. “2ème note”, p. 38. Cuénot does not supply the full reference.

  36. Ibid.

  37. For a detailed account of Cuénot's earlier interests of considerable relevance to our discussion, see Camille Limoges, “Natural Selection, Phagocytosis, and Preadaptation: Lucien Cuénot, 1886–1901”, J. Hist. Med. Allied Sci., 31 (1976), 176–214.

    Google Scholar 

  38. So far as we know, with the exception of a single paper (C. Jensen, “Experimentelle Untersuchungen über Krebs bei Mäusen”, Centralbl. Bakter. Parasit., 1. Abt., 34 [1903], 28–34, 122–143), Cuénot and his collaborators were the only group to work on this topic at the time. Their most remarkable result was probably the observation of a reversal of dominance resulting from a graft. Cuénot began his long series of publications with L. Mercier on the inheritance of cancer in mice in 1908. See, e.g., L. Cuénot and L. Mercier, “Études sur le cancer des Souris. Y-a-t-il un rapport entre les différents mutations connues chez les Souries et la réceptivité à la greffe?” Comp. Rend. Acad. Sci., 147 (1908), 1003–1005; “Études sur le cancer des Souris. Sur l'histophysiologie de certaines cellules du stroma conjonctif de la tumeur B”, ibid., 147 (1908), 1340–42; “Études sur le cancer des Souris. Relations entre la greffe de tumeur, la gestation, et la lactation”, ibid., 149 (1909), 1012–13; and “Études sur le cancer des Souris. L'hérédité de la sensibilité à la greffe cancereuse”, ibid., 150 (1910), 1443–46. See also “L'hérédité de la sensibilité à la greffe cancereuse chez les Souris. Résultats confirmatifs”, Comp. Rend. Soc. Biol., 69 (1910), 645–646.

    Google Scholar 

  39. A. Tetry in the discussion of P. L'Héritier, “Souvenirs” (above, n. 21), p. 347.

  40. E.g., P. Vilmorin, “Recherches sur l'hérédité mendélienne”, Comp. Rend. Acad. Sci., 151 (1910), 548–551.

    Google Scholar 

  41. L. Blaringhem, “Sur les hybrides d'Orges et la loi de Mendel”, Comp. Rend. Acad. Sci., 148 (1909), 854–857, and “Les règles de Naudin et les lois de Mendel relative à la disjonction des caractères hybrides”, ibid., 152 (1911), 100–102. See also the discussion of Blaringhem in Buican, Histoire de la génétique (above, n. 1), pp. 247–261.

    Google Scholar 

  42. See above, n. 17. See also A. Delcourt, “Sur l'apparition brusque et l'hérédité d'une variation chez Drosophila confusa”, Comp. Rend. Soc. Biol., 66 (1909), 709–711; A. Delcourt and E. Guyénot, “De la possibilité d'étudier certains diptères en milieu défini”, Comp. Rend. Acad. Sci., 151 (1910), 255–257; A. Delcourt and E. Guyénot, “Variation et milieu: lignées de Drosophiles en milieu stérile et défini”, Comptes rendus de la IVème Conférence internationale de Génétique (Paris: Masson, 1911), pp. 478–486; E. Guyénot, “Études biologiques sur un mouche, Drosophila ampelophila Löw”, Comp. Rend. Soc. Biol. 74 (1913), 97–99, 178–180, 223–225, 270–272, 332–334, 389–391, 443–445; E. Guyénot, “Études biologiques sur la mouche, Drosophila ampelophila Löw. Nécessité de réaliser un milieu défini”, ibid., 71 (1914), 483–485; “Premiers essais de détermination d'un milieu nutritif artificiel pour l'élevage d'une mouche, Drosophila ampelophila Löw”, ibid., 548–550.

    Google Scholar 

  43. E. Guyénot, “Recherches expérimentales sur la vie aseptique et le développement d'un organisme en fonction du milieu”, Bull. Biol. Fr. Belg., 51 (1917), 1–330.

    Google Scholar 

  44. E. Guyénot, “L'oeuvre de T. H. Morgan et le mécanisme de l'hérédité”, Rev. Gén. Sci. Pures Appl., 29 (1918), 264: “J'ai pu, grâce à l'obligeance de T. H. Morgan, avoir entre les mains un certain nombre des mutations sur lesquelles ont porté ses recherches. Après avoir rendu aseptiques les élevages de ces lignées, j'ai pu refaire la plupart des croisements déjà réalisés par les auteurs américains et me convaincre, par moi-même, et d'après des pourcentages considérables, de la légitimité des résultats annoncés”, In a footnote, Guyénot adds: “Ces recherches, qui datent de 1913–1914, n'ont pas encore pu être publiées”. The date of 1913 for the receipt of Morgan's flies is explicitly confirmed in a later publication (E. Guyénot, “Recherches sur un cas d'hérédité ‘sex-linked’; la Drosophile à oeil ‘barred’”, Mém. Soc. Phys. Hist. Nat. Genève, 39, fasc. 5 [1920]), an article which begins with these words: “Les recherches qui font l'objet de ce mémoire ont été effectuées sur des Drosophila ampelophila, mutation ‘barred eyes’ que Th. H. Morgan eut l'obligeance de m'adresser en 1913”. It should be recalled that “Drosophila ampelophila Löw” is a synonym for “Drosophila melanogaster”.

    Google Scholar 

  45. This controversy began with Guyénot, “L'oeuvre de T. H. Morgan”, and continued for two decades, most prominently in the Bulletin biologique de la France et de la Belgique. As late as 1937, in an issue containing two of Ephrussi and Beadle's articles on their transplantation experiments, one finds three articles with self-explanatory titles: M. Caullery, “À propos des commentaires sur l'hérédité de M. Rabaud” (pp. 1–9); E. Guyénot, “La génétique et les illusions de M. Rabaud” (pp. 10–21); and E. Rabaud, “À propos de hérédité: Réplique à deux réponses”. The articles are not merely polemical, they strive for insult. This is made the more remarkable by the fact that all three authors were on the editorial board of the journal.

  46. Formally, as Harry Paul has reminded us, the École Normale was incorporated into the University of Paris in 1903. In practice, however, it retained considerable autonomy; its curriculum was not well integrated into the university's.

  47. Ph. L'Héritier, “Souvenirs,” p. 335.

  48. Ph. L'Héritier and G. Teissier, “Etude d'une population de Drosophiles en équilibre,” Comp. Rend. Acad. Sci., 197 (1933), 1765–67; “Une expérience de sélection naturelle. Courbe d'élimination du gène ‘bar’ dans une population de Drosophiles en équilibre,” Comp. Rend. Soc. Biol., 117 (1934), 1049–51; and “Recherches sur la concurrence vitale. Études de populations mixtes de Drosophila melanogaster et Drosophila funebris,” ibid., 118 (1935), 1396–98.

    Google Scholar 

  49. Ph. L'Héritier and G. Teissier, “L'élimination des formes mutantes dans les populations de Drosophiles. I. Cas des drosophiles ‘bar’. II. Cas des Drosophiles ‘ebony’,” Comp. Rend. Soc. Biol., 124 (1937), 882–884.

    Google Scholar 

  50. Philippe L'Héritier and Georges Teissier, “Une anomalie physiologique héréditaire chez la Drosophile,” Comp. Rend. Acad. Sci., 205 (1937), 1099–1101; P. L'Héritier and G. Teissier, “Une mécanisme héréditaire aberrant chez la Drosophile,” ibid., 206 (1938), 1193–95; P. L.'Héritier and G. Teissier, “Transmission héréditaire de la sensibilité au gaz carbonique chez la Drosophile,” ibid., 206 (1938), 1683–85.

    Google Scholar 

  51. Held at Ambert, France, November 1984.

  52. Although we cannot expand on the point in the present paper, L'Héritier's pursuit of CO2 sensitivity during and after the war illustrates the themes of this paper quite nicely. His analysis led him to ascribe the inheritance of sensitivity to the workings of a “génoïde,” a cytoplasmically inherited gene or genetic complex. Further analysis of the physiology and physical properties of the génoïde eventually led to the recognition that the inherited agent was a virus. One side effect of this work was that L'Héritier was the founding director of the Laboratory of the Genetics of Viruses at the CNRS (see the next paragraph of the text regarding the CNRS). Early references are collected in Ph. L'Héritier, “Génoïde sensibilisant la Drosophile à l'anhydride carbonique,” In Unités biologiques douées de continuité génétique (Paris: CNRS, 1949), pp. 113–122. References to subsequent articles may be found in Buican, Histoire de la génétique, pp. 342 ff.

    Google Scholar 

  53. An important popularizer of this image was F. Le Dantec, who had been a pupil of Pasteur; see, e.g., F.Le Dantec, La crise du transformisme (Paris: 021 Flammarion, 1909), chap. 1.

    Google Scholar 

  54. This is an old medical word (“diathèse” in French) that originally meant predisposition to disease. It was typically used for unknown or unspecific endogenous sources of disease or infection. Le Dantec first presented this argument in “L'hérédité des diathèses ou hérédité mendélienne,” Rev. Sci., 5th ser. 1 (1904), 513–517, and in sect. 56 of Les influences ancestrales (Paris: Flammarion, 1904), pp. 267–283. These texts, incidentally, show a thorough comprehension of Cuénot's early papers on inheritance in mice. This is typical of the serious biological texts of the day. In 1909, in La crise du transformisme, Le Dantec returns to this objection in a historically interesting formulation: “[Les expériences d'hérédité mendélienne prouvent que], à côté du patrimoine héréditaire capable de reproduire les mécanismes vivants, il peut y avoir dans l'oeuf des microbes surajoutés qui déterminent, chez l'être provenant de l'oeuf, des caractères surajoutés. En raisonnant ainsi, je me borne à substituer le langage de Pasteur au language de Weismann. ... Les caractères mendéliens sont des maladies chimiques ou diathèses, et voila tout” (Leçon 7).

  55. Interview with P. P. Slonimski, Gif-sur-Yvette, November 1984.

  56. In 1909, Rabaud undertook to demonstrate the validity of Cuénot's work on mice. One result was a large and confusing memoir of 313 pages on “The Physiological Theory of Heredity,” published as Supplement I of Bull. Biol. Fr. Belg. in 1919 under the title of “Recherches sur l'hérédité et la variation: Étude expérimentale et théorie physiologique.” See also, for instance, E. Rabaud, “Sur une anomalie héréditaire des membres postérieurs de la souris,” Comp. Rend. Soc. Biol., 77 (1914), 411–412, “Sur une variation héréditaire spéciale au sexe mâle: Les souris grises blanchissant,” ibid., 78 (1915), 58–59 and “Les grandes lignes d'une théorie physiologique de l'hérédité,” ibid., 79 (1917), 738–744.

    Google Scholar 

  57. See, for example, Rabaud's criticisms of Morgan's theory in his chapter on “L'hérédité,” pp. 268–303 of Éléments de biologie générale (Paris: Félix Alcan, 1928). Here are two characteristic passages. Against the view that the nucleus is the sole bearer of heredity: “Or, cette hypothèse fondamentale soulève contre elle tous les faits précédemment mis en lumière, qui montrent que noyau et cytosarque forment un complexe indivisible. Refuser au cytosarque toute valeur dans les processus de continuité héréditaire, tenir cette négation pour un fait acquis et bâtir sur elle un système entier, nous met complètement en dehors du domaine de la spéculation scientifique. Plusieurs biologistes, du reste, concèdent au cytosarque une certaine importance dans la détermination des particularités très générales, telles que l'existence, la position et la proportion relative des organes futurs; les caractères spécifiques et individuels appartiendraient au noyau. Le fait d'avoir deux yeux dépendrait du cytosarque; la forme de ces yeux, le contenu de l'iris dépendraient du chromosome. Cette conception revient à considérer cytosarque et noyau comme un complexe indivisible et à voir dans la continuité héréditaire la continuité du complexe” (p. 285). “Tout d'abord, du point de vue héréditaire, la distinction entre le noyau et le cytosarque n'est pas plus défendable que du point de vue strictement physiologique. L'équivalence fonctionnelle des duex parties ne fait aucun doute et rien ne nous autorise à admettre la moindre restriction” (p. 289).

  58. Both P. P. Slonimski and M. Weiss made this point in independent interviews, Gif-sur-Yvette, November 1984, and Paris, October 1985.

  59. Lwoff's synthesis of this work may be found in Recherches sur la nutrition des Protozoaires (Paris: Masson, 1932).

  60. Summarized in A. Lwoff, L'évolution physiologique. Étude des pertes de 021 fonctions chez les microorganismes (Paris: Hermann, 1943). This book contains a full bibliography.

    Google Scholar 

  61. The beginnings of this story are usefully sketched from an orthodox perspective in chap. 1 of G. Stent, Molecular Biology of Bacterial Viruses, (San Francisco: Freeman, 1963). The definitive establishment of the existence of lysogenic strains of bacteria by 1925 and the gradual uncovering of the differences (and their importance) between lytic and lysogenic strains are reviewed at pp. 273–280 of A. Lwoff, “Lysogeny,” Bacteriol. Rev., 17 (1953), 269–337.

    Google Scholar 

  62. F. d'Hérelle, “Sur un microbe invisible antagoniste des bacilles dysentériques,” Comp. Rend. Acad. Sci., 165 (1917), 373–375.

    Google Scholar 

  63. F. W. Twort, “An Investigation on the Nature of the Ultramicroscopic Viruses,” Lancet, (2), 189 (1915), 1241–43.

    Google Scholar 

  64. For two different accounts of this terminology, see Stent, Molecular Biology, pp. 11 ff., and A. Delaunay, L'Institut Pasteur des origines à nos jours 021 (Paris: France-Empire, 1962), pp. 199 ff.

    Google Scholar 

  65. The present discussion is based primarily on an examination of French-language sources. There is important work in English, German, and Italian that should be examined in order to gain a comparative perspective. Such a study is, however, beyond the scope of the present paper. The best single source for such a discussion covering the work of the Wollmans is probably Lwoff's “Lysogeny,” esp. pp. 276–279. Added in proof: Since this was written, Charles Galperin has published his excellent article, “Le bactériophage, la lysogénie, et son déterminisme génétique,” Hist. Phil. Life Sci., 9 (1987), 175–224.

  66. See Ph. d'Hérelle, “Technique de la recherche du microbe filtrant bactériophage (Bacteriophagum intestinale),” Comp. Rend. Soc. Biol., 81 (1918), 1160–62, and the four following articles, all published in vol. 83 (1920) of that same journal: “Sur la culture du microbe bactériophage,” “Sur la nature du principe bactériophage,” “Sur la résistance des bactéries à l'action du microbe bactériophage,” and “Sur le microbe bactériophage.” These titles alone are sufficient to give the flavor of d'Hérelle's point of view.

    Google Scholar 

  67. J. Bordet and M. Cuica, “Le bactériophage de d'Hérelle, sa production et son interprétation,” Comp. Rend. Soc. Biol., 83, (1920), 1296–98.

    Google Scholar 

  68. E. and E. Wollman, “À propos de la note de MM. Bordet et Cuica (Phénomène de d'Hérelle, autolyse transmissible de J. Bordet et M. Cuica, et hypothèse de la pangenèse de Darwin),” Comp. Rend. Soc. Biol., 83 (1920), 1478–79, and “Sur le phénomène de d'Hérelle,” ibid., 84 (1921), 3–5.

    Google Scholar 

  69. Of particular importance is a series of six articles in the Annales de l'Institut Pasteur: namely, E. Wollman, “Recherches sur la bactériophagie (Phénomène de Twort-d'Hérelle),” Ann. Inst. Pasteur, 39 (1925), 789–832; idem, “Recherches sur la bactériophagie (phénomène de Twort-d'Hérelle), deuxiéme mémoire,” ibid., 41 (1927), 883–918; E. and E. Wollman, “Recherches sur le phénomène de Twort-d'Hérelle (bactériophagie), troisième mémoire,” ibid., 49 (1932), 41–74; “Recherches sur le phénomène de Twort-d'Hérelle (bactériophagie ou autolyse hérédo-contagieuse), quatrième mémoire,” ibid., 56 (1936), 137–164; and “Recherches sur le phénomène de Twort-d'Hérelle (bactériophagie ou autolyse contagieuse), cinquième mémoire,” ibid., 60 (1938), 13–57; and E. Wollman and A. Lacassagne, “Recherches sur le phénomène de Twort-d'Hérelle, sixième mémoire: Évaluation des dimensions des bactériophages au moyen des rayons X,” ibid., 64 (1940), 5–39.

    Google Scholar 

  70. E. and E. Wollman, “Cinquième mémoire,” p. 52.

  71. Ibid., p. 51.

  72. Ibid.

  73. It should be noted that M. Schlesinger had managed to visualize phage particles as bright points in the dark-field microscope in 1933; cf. “Beobachtung and Zahlung von Bakteriophagenteilchen im Dunkelfeld. Die Form der Teilchen,” Z. Hyg. Infektionsk., 115 (1933), 774–775. The number of particles was roughly comparable to those obtained by a variety of indirect assays. But the issue of the viral and particulate character of the phenomenon was not yet considered to have been definitively established by all of the disputants.

  74. E. and E. Wollman, “cinquième mémoire,” Comp. Rend. Soc. Biol., 83 (1920), pp. 52–53. Lwoff's appendix to the “quatrième mémoire” of 1936 (“Remarques sur une propriété commune aux gènes, aux principes lysogènes et aux virus des mosaïques,” pp. 165–170) makes it clear that he and Wollman had discussed various “factorial conceptions of the lysogenic principle” (p. 165), including the famous passage in H. J. Muller's Croonian Lecture (“Variation Due to Change in the Individual Gene,” Amer. Nat., 56 [1922], 32–50) suggesting that the substance responsible for the d'Hérelle phenomenon fits the definition of a gene. Wollman arrived at such views, however, from the analysis of lysogeny and of others' work on bacteriophage, not from research in genetics. The examination of the regulation of lysogeny from this perspective led Lwoff and Wollman to speculate on the distinction between genes as “inducers” [“inducteurs”] and enzymes as catalysts. Lwoff's text documents (e.g., p. 168) that they were already seeking as of this early date to account for the difference between “constitutive” and “adaptive” enzymes by reference to the effects of permanently active vs. inactive (but activatable) inducers (genes). This prefiguring of the pathway from lysogeny to gene regulation, later elaborated in the Pasteur by Jacob, Lwoff, Monod, and Wollman fils, deserves further exploration.

    Google Scholar 

  75. S. Luria, “Sur l'unité lytique du bactériophage,” Comp. Rend. Soc. Biol., 130 (1939), 904–908. The object of this study was to determine, by means of statistical methods, whether a single phage was sufficient to produce bacterial lysis. Although Luria worked directly with Raymond Latarjet at the Institut du Radium in the laboratory of Fermont-Lebesque, the work was carried out in collaboration with Eugène Wollman. See also E. Wollman, S. Luria, and F. Holweck, “Effect of Radiation on Bacteriophage C16,” Nature, 145 (1940), 935–936.

    Google Scholar 

  76. See H. F. Judson, The Eighth Day of Creation (New York: Simon and Schuster, 1979), pp. 358 ff., for a brief account of this work and the circumstances involved.

    Google Scholar 

  77. Cf. J. Monod, “Du microbe à l'homme,” in Of Microbes and Life, ed. J. Monod and E. Borek (New York and Paris: Columbia University Press, 1971), p. 7.

    Google Scholar 

  78. Our views on Ephrussi have been influenced by the work of Jan Sapp, particularly chap. 5, “Boris Ephrussi, Nucleo-Cytoplasmic Relations, and the Institutional Strategy of French Genetics, 1945–1953,” of Beyond the Gene: Cytoplasmic Inheritance and the Struggle for Authority in Genetics (New York: Oxford University Press, 1987). This chapter is the best secondary source on Ephrussi known to us.

    Google Scholar 

  79. The general techniques had been elaborated in an important series of studies on Ephestia by A. Kühn's group (including E. Caspari and E. Plagge); see below, n. 93, for references and further discussion.

  80. In his referee's report on this paper, Will Provine points out that the work of E. B. Ford and Julian Huxley on the shrimp Gammarus (e.g., “Mendelian Genes and Rates of Development in Gammarus chevreuxi,” Brit. J. Exp. Biol., 5 [1927], 112–134, or “Genetic Rate-Factors in Gammarus,” Arch. Entwicklungsmech., 117 [1929], 67–79), and especially that of L. Loeb and S. Wright (“Transplantation and Individuality Differentials in Inbred Families of Guinea Pigs,” Amer. J. Pathol., 3 [1927], 251–285), could be counted as antecedents within the genetic tradition for Ephrussi and Beadle's collaborative experiments. Although Ephrussi and Wright exchanged papers, as Provine points out, we have found no reference to Loeb and Wright's transplant experiments or to Ford and Huxley's Gammarus papers in Ephrussi's or Beadle's publications of the time. This contrasts sharply with the extensive references to the papers of Kühn's group. The work of the latter clearly served as an explicit model for Ephrussi and Beadle's transplant experiments; the connection to Ford and Huxley or Leob and Wright, in contrast, seems tenuous at best.

  81. E.g., A. Danchin, “Physique, chimie, biologie. Un demi-siècle d'interactions (1927–1977),” in Cinquantième anniversaire de l'Institut de Biologie physico-chimique (Paris: Fondation Edmond de Rothschild, 1977). A similar account is implicit in Judson, Eighth Day, pp. 279 and 610. Variants of this diagram are found in many textbooks.

    Google Scholar 

  82. Interview with René Wurmser, Institut de Biologie physico-chimique, October 1985.

  83. A. H. Sturtevant, “Genetic Studies on Drosophila simulans,” Genetics, 5 (1920), 488–500; and B. Ephrussi, “Sur le chondriome ovarien de Drosophila melanogaster,” Comp. Rend. Soc. Biol., 92 (1925), 778–780.

    Google Scholar 

  84. B. Ephrussi: Contribution à l'analyse des premiers stades du développement 081 de l'oeuf. Action de la température (Paris: Imprimerie de l'Académie, 1932), and Croissance et régénération dans les cultures des tissus (Paris: Masson, 1932).

    Google Scholar 

  85. Interview with René Wurmser.

  86. Interviews with Mme Ryss-Ephrussi (Ephrussi's first wife) and René Wurmser, October 1985.

  87. B. Ephrussi, “Sur le facteur létal des Souris brachyures,” Comp. Rend. Acad. Sci., 197 (1933), 96–98.

    Google Scholar 

  88. Proc. Nat. Acad. Sci., 20 (1934), 420–422.

  89. The principle consisted of using a duplication known for its ability to suppress the effect of the lethal gene located on the X-chromosome. This duplication was often lost during mitotic divisions in males.

  90. B. Ephrussi, “The Behavior in Vitro of Tissues from Lethal Embryos,” J. Exp. Zool., 70 (1935), 197–204.

    Google Scholar 

  91. Interview with Mme Ryss-Ephrussi. Beadle was the Ephrussis' house guest during this period in Paris.

  92. B. Ephrussi and G. Beadle, “La transplantation des disques imaginaux chez les Drosophiles,” Comp. Rend. Acad. Sci., 201 (1935), 98.

    Google Scholar 

  93. Much of this work is parallel to that of the Kühn group. Cf. the following representative pieces: E. Becker, “Extraktion des bei der Mehlmotte Ephestia kühniella die dunkle Ausfärbung der Augen auslösenden Gen-A-Hormons,” Naturwissenschaften, 25 (1937), 507; E. Caspari, “Über die Wirkung eines pleiotropen Gens bei der Mehlmotte Ephestia kühniella Z.,” Arch. Entwicklungsmech. Org., 130 (1933), 353–381; A. Kühn, “Entwicklungsphysiologischgenetisch Ergebnisse an Ephestia kühniella Z.,” Z. induk. Abstam. Vererb., 73 (1937), 419–455; A. Kühn, E. Caspari, and E. Plagge, “Über hormonale Genwirkungen bei Ephestia kühniella,” Ges. Wiss. Göttingen, Nachr. Biol., n.s. 2 (1936), 1–29; A. Kühn and K. Henke, “Genetische und entwicklungsphysiologische Untersuchungen an der Mehlmotte Ephestia kühniella Zeller. I.–VII. and VIII.–XII.,” Abh. Ges. Wiss. Göttingen, 15 (1929, 1932), 3–121, 127–219; and A. Kühn and E. Plagge, “Prädetermination der Raupen-augenpigmentierung bei Ephestia kühniella Z. durch den Genotyp der Mutter und durch arteigene und artfremde Implantate,” Biol. Zentralbl., 57 (1937), 113–126. Ephrussi and Beadle were able to exploit two advantages of Drosophila that were not available to the Ephestia workers: (1) Many well-characterized eye-color mutants were available in Drosophila; this allowed the use of a graded series of tester strains for scoring the effects of - and the effects on — various implants. (2) Once Ephrussi and Beadle recognized that the vermilion and cinnabar mutations affected sequential metabolic steps (the formation of the v+ and cn+ substances), they had the opportunity to dissect a developmental pathway in greater detail than the Ephestia workers since, as it turned out, in spite of the close parallels between the two systems, formation of the v+ but not the cn+ substance was blocked in Ephestia.

    Google Scholar 

  94. We shall not list the entire series of articles. What follows is a representative sample: G. Beadle and B. Ephrussi, “Transplantation in Drosophila,” Proc. Nat. Acad. Sci., 21 (1935), 642–646; G. Beadle and B. Ephrussi, “Différenciation de la couleur cinnabar chez la Drosophile,” Comp. Rend. Acad. Sci., 201 (1935), 620–621; B. Ephrussi and G. Beadle, “La transplantation des disques imaginaux chez la Drosophile,” ibid., pp. 98–100; B. Ephrussi and G. Beadle, “Sur les conditions de l'autodifférenciation des caractères mendéliens,” ibid., pp. 1148–50; G. Beadle and B. Ephrussi, “The Differentiation of Eye Pigments in Drosophila as Studied by Transplantation,” Genetics, 21 (1936), 76–86; G. Beadle and B. Ephrussi, “Development of Eye Colors in Drosophila: Transplantation Experiments with Suppressor of Vermilion,” Proc. Nat. Acad. Sci., 22 (1936), 536–540; B. Ephrussi and G. Beadle, “A Technique for Transplantation for Drosophila,” Amer. Nat., 70 (1936), 218–225; G. Beadle and B. Ephrussi, “Development of Eye Colors in Drosophila: Diffusible Substances and Their Interrelations,” Genetics, 22 (1937), 76–86; G. Beadle and B. Ephrussi, “Development of Eye Colors in Drosophila: Pupal Transplants and the Influence of Body Fluid on Vermilion,” Proc. Roy. Soc. London ser. B, 122 (1937), 98–105; B. Ephrussi and G. Beadle, “Développement des couleurs des yeux chez les Drosophile: Influence des implants sur la couleur des yuex de l'hôte,” Bull. Biol. Fr. Belg., 71 (1937), 54–74; B. Ephrussi and G. Beadle, “Development of Eye Color in Drosophila: Transplantation Experiments on the Interaction of Vermilion with Other Eye Colors,” Genetics, 22 (1937), 65–75.

    Google Scholar 

  95. Ephrussi and Beadle, “Développement des couleurs des yeux,” p. 55.

  96. B. Ephrussi, “Aspects of the Physiology of Gene Action” [Lecture delivered at Woods Hole, August 1937] Amer. Nat., 72 (1938), 5–23.

    Google Scholar 

  97. E. Becker and E. Plagge, “Vergleich der Ausfärbung bedingenden Gen-Wirkstoffe von Ephestia und Drosophila,” Naturwissenschaften, 25 (1937), 809; E. Becker, “Die Gen-Wirkstoffe Systeme der Augenausfärbung bei Insekten,” ibid., 26 (1938), 433–441; and B. Ephrussi and M. Harnley, “Sur la présence, chez différents Insectes, des substances intervenant dans la pigmentation des yeux de Drosophila melanogaster,' Comp. Rend. Acad. Sci., 203 (1936), 1028–30.

    Google Scholar 

  98. See for instance, Y. Khouvine, B. Ephrussi, and S. Chevais, “Development of Eye Colors in Drosophila. Nature of the Diffusible Substances; Effects of Yeast, Peptones, and Starvation in Their Production,” Biol. Bull., 7 (1938), 425–446.

    Google Scholar 

  99. A. Butenandt, W. Weidel, and E. Becker, “Kynurenin als Augenpigmentbildung auslösendes Agens bei Insekten,” Naturwissenschaften, 28 (1940), 63–64; E. Tatum and G. Beadle, “Crystalline Drosophila Eye-Color Hormone,” Science, 91 (1940), 458; and E. Tatum and A. Haagen Smit, “Identification of Drosophila v+ Hormone of Bacterial Origin,” J. Biol. Chem., 140 (1941), 575–580. Cf. also Ephrussi's review, “Chemistry of ‘Eye-Color Hormones’ of Drosophila,” Quart. Rev. Biol., 17 (1942), 327–338.

    Google Scholar 

  100. A. Garrod, “Croonian Lectures to the Royal Academy of Medicine: Inborn Errors of Metabolism,” Lancet, 2 (1908), 1–7. Cf. also idem, Inborn Errors of Metabolism (London: Frowde and Hodder, 1909).

    Google Scholar 

  101. Cf. Ch. Galperin, “Un gène—un enzyme,” forthcoming in Cahiers Soc. Fran. Hist. Sci., originally presented in May 1985.

  102. B. Ephrussi, Génétique physiologique (Paris: Hermann, 1939), p. 6. 081

    Google Scholar 

  103. In 1944 and 1945, Ephrussi published three papers based on work done with Jean Lane Herold at Johns Hopkins University (B. Ephrussi and J. Herold, “Studies of Eye Pigments of Drosophila. I. Methods of Extraction and Quantitative Estimation of the Pigment Components. II. Effects of Temperature on the Red and Brown Pigments in the Mutant Blood (wbl),” Genetics, 29 [1944], 148–175, and 30 [1945], 62–70; B. Ephrussi, “Studies of Eye Pigments of Drosophila. III. The Heterogeneity of the ‘Red Pigment’ as Revealed by the Effects of the ‘White’ Alleles and by the Color Changes during Development,” ibid., 30 [1944], 70–83). These papers deal primarily with the characterization of, and interrelationships between, the red and brown pigments responsible for eye color in Drosophila. The only significant mention of the mode of gene action in the entire series occurs in the three introductory paragraphs of the first paper, where the v+ and cn+ substances are described as “hormone-like diffusible substances derived from tryptophane and representing intermediate links of [the brown-pigment-forming reaction] chain.” Earlier work on those substances is characterized as based on the hope of “finding a rather direct relationship between the diffusible substances and the genes controlling their production,” and as yielding “the net result ... that the chain of reactions leading to the formation of brown pigment is now rather well defined.” There is no mention of one gene—one enzyme or of Beadle and Tatum's Neurospora work or its results anywhere in the entire series.

    Google Scholar 

  104. From B. Ephrussi, “Analysis of Eye Color Differentiation in Drosophila,” Cold Spr. Harbor Symp. Quant. Biol., 10 (1942), 47.

    Google Scholar 

  105. “I should like to forestall some possible objections to the frequent use I have made of the term hormone as applied to the diffusible substances of Drosophila ... I meant to use the term hormone in the sense of a highly active substance produced in a definite organ, transmitted through the internal medium and affecting in a specific manner another definite organ ... “[The Drosophila substances fit this definition, although with two peculiarities.] In the first place, these substances are, most frequently, produced by the same organ which utilizes them. Second, there is usually more than one organ producing them. “While the classical definition of hormones contains only references to the locus of formation, method of transfer and locus of action of a substance, in modern writings the term hormone has often been meant to imply also a reference ... to a mode of action ... [as a] biocatalyst. [Hormones] should merely assist, not participate in, the reaction whose course they affect or control. The substances I have been discussing certainly do take a direct part in the process of pigment formation ... Nevertheless, it remains to be shown directly that kynurenin or the cn+ substance is actually a building block in the synthesis of the brown pigment” ibid.

  106. There remains one further tradition whose importance in the history we have been exploring needs close investigation—that of cytology. Caullery, for example, preferred to treat the chromosomal theory as part of the theory of the cell rather than as simply a theory of heredity. And Guyénot was heavily involved in cytogenetics. We hope to explore the role of cytology in this regard in our continuing research on these matters.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The order of the authors is alphabetical and has no other significance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burian, R.M., Gayon, J. & Zallen, D. The singular fate of genetics in the history of French biology, 1900–1940. J Hist Biol 21, 357–402 (1988). https://doi.org/10.1007/BF00144087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00144087

Keywords

Navigation