Skip to main content
Log in

A quantitative technique for comparing synthetic porous hydroxyapatite structures and cancellous bone

  • Paper
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

There are many different materials currently available for cancellous bone grafting. There is however, very little information relating the morphology of these materials to cancellous bone. Work was undertaken to develop a quantitative method for comparing synthetic hydroxyapatite bone structures with cancellous bone. The bases for comparison were mean plate thickness, mean plate distance, mineral area fraction, mineral volume fraction and plate orientation coupled with mechanical tests. The aim of this work was to develop a protocol for assessing whether these critical parameters which influence the success of bone implants were achieved in the synthetic materials. The methodology is successful in providing quantitative information about the mineral area fraction, the mean plate distance or pore size and the intercept frequency as a function of angle. Combining these three provides a quantitative measure of how much mineral there is and how it is distributed and oriented. The mechanical tests yield strengths and moduli values based on apparent density. The results of the mechanical tests can also be plotted as functions of the more discrete structural features such as those quantified in the image analysis to allow for even more equitable and systematic comparisons of different porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Abbott, E. R. Schottstaedt, J. B. Saunders and F. C. Bost, J. Bone Jt Surg. 39 (1947) 381.

    Google Scholar 

  2. R. S. Siffert, J. Bone Jt Surg. 99 (1967) 746–755.

    Google Scholar 

  3. W. A. Souter, J. Bone Jt Surg. 51B (1969) 63–75.

    Google Scholar 

  4. A. L. Boskey and A. S. Posner, In Symposium on Metabolic Bone Disease, Orthopaedic Clinics of North America 15 (1984) 597–612.

  5. K. Sato, E. Wakamatsu, T. Sato, T. Honma, H. Kotake and P. D. Byers, Calcified Tiss. Int. 39 (1986) 2–7.

    Google Scholar 

  6. J. A. Buckwalter and R. R. Cooper, “Physiology of bone”, American Academy of Orthopaedic Surgeons 26 (1987) 27–48.

    Google Scholar 

  7. L. D. Hordon and M. Peacock, Bone and Mineral 11 (1990) 335–345.

    Google Scholar 

  8. R. T. DeHoff, J. Microsc. 131 (1982) 259–263.

    Google Scholar 

  9. J. McElaney, N. Alem and V. Roberts, ASME Pub. No. 70-WA/BHF-2, 1–9.

  10. R. T. DeHoff, E. H. Algeltinger and K. R. Craig, J. Microsc. 95 (1972) 69–91.

    Google Scholar 

  11. R. W. E. Mellish, W. Ferguson-Pell, G. V. B. Cochran, R. Lindsay and D. W. Dempster, J. Bone and Mineral Res. 6 (1991) 689–697.

    Google Scholar 

  12. A. Vesterby, H. J. G. Gundersen and F. Melsen, Bone 10 (1989) 7–13.

    Google Scholar 

  13. I. Singh, J. Anatomy 127 (1978) 305–310.

    Google Scholar 

  14. L. A. Feldkamp, S. A. Boldstein, A. M. Parfitt, G. Jesion and M. Kleerekoper, J. Bone and Mineral Res. 4 (1989) 3–11.

    Google Scholar 

  15. N. J. Garrahan, R. W. E. Mellish and J. E. Compston, J. Microsc. 142 (1986) 341–349.

    Google Scholar 

  16. J. A. Quiblier, J. Colloid and Interface Sci. 98 (1983) 84–102.

    Google Scholar 

  17. E. Lozupone and A. Favia, Calcified Tiss. Int. 46 (1990) 367–372.

    Google Scholar 

  18. D. P. Fyhrie, N. L. Fazzalari, R. Goulet and S. A. Golstein, J. Biomechanics 26 (1993) 955–967.

    Google Scholar 

  19. R. W. Goulet, L. A. Feldkamp, D. J. Kubinski and S. A. Goldstein, In Proceedings of 35th Annual Meeting, Orthopaedic Research Society, February 6–9 (1989).

  20. J. E. Aaron, D. R. Johnson, J. A. Kanis, B. A. Oakley, P. O'Higgins and S. K. Paxton, Computer and Biomed. Res. 25 (1992) 1–16.

    Google Scholar 

  21. E. Polig and W. E. E. Jee, Bone 6 (1985) 357–359.

    Google Scholar 

  22. N. J. Garrahan, R. W. E. Mellish, S. Vedi and J. E. Compston, Bone. 6 (1987) 227–230.

    Google Scholar 

  23. A. D. Kuo and D. R. Carter, J. Orthop. Res. 9 (1991) 918–931.

    Google Scholar 

  24. P. Raux, P. R. Townsend and R. Miegel, J. Biomechanics 8 (1975) 1–7.

    Google Scholar 

  25. M. Yanuka, F. A. L. Dullien and D. E. Elrick, J. Microsc. 135 (1984) 159–168.

    Google Scholar 

  26. M. J. Kwiecien, I. F. Mac Donald and F. A. L. Dullien, J. Microsc. 159 (1990) 343–359.

    Google Scholar 

  27. I. F. Mac Donald, P. Kaufmann and F. A. L. Dullien, J. Microsc. 144 (1986) 277–296.

    Google Scholar 

  28. H. Tagai and H. Aoki, Mechanical Properties of Biomaterials, edited by G. W. Hastings and D. F. Williams (John Wiley & Sons, 1980) pp. 477–488.

  29. I. M. O. Kangasniemi, K.de Groot, J. G. M. Becht and A. Yli-Urpo, J. Biomed. Mater. Res. 26 (1992) 663–674.

    Google Scholar 

  30. A. H. Burstein, J. M. Zika, K. G. Heiple and L. Klein, J. Bone & J. Surg. 57A (1975) 956–961.

    Google Scholar 

  31. C. H. Turner, J. Biomechanical Engng 111 (1989) 256–259.

    Google Scholar 

  32. F. Linde, I. Hvid and F. Madsen, J. Biomechanics 26 (1992) 359–368.

    Google Scholar 

  33. T. M. Keaveny, R. E. Borchers, L. J. Gibson and W. C. Hayes, J. Biomechanics 26 (1993) 991–1000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Kelly, K., Tancred, D., McCormack, B. et al. A quantitative technique for comparing synthetic porous hydroxyapatite structures and cancellous bone. J Mater Sci: Mater Med 7, 207–213 (1996). https://doi.org/10.1007/BF00119732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119732

Keywords

Navigation