Skip to main content
Log in

Background and overview of current sediment toxicity identification evaluation procedures

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

Laboratory bioassays can provide an integrated assessment of the potential toxicity of contaminated sediments to aquatic organisms; however, toxicity as a sole endpoint is not particularly useful in terms of identifying remedial options. To focus possible remediation (e.g., source control), it is essential to know which contaminants are responsible for toxicity. Unfortunately, contaminated sediments can contain literally thousands of potentially toxic compounds. Methods which rely solely on correlation to identify contaminants responsible for toxicity are limited in several aspects: (a) actual compounds causing toxicity might not be measured, (b) concentrations of potentially toxic compounds may covary, (c) it may be difficult to assess the bioavailability of contaminants measured in a sediment, and (d) interactions may not be accounted for among potential toxicants (e.g., additivity). Toxicity identification evaluation (TIE) procedures attempt to circumvent these problems by using toxicity-based fractionation procedures to implicate specific contaminants as causative toxicants. Phase I of TIE characterizes the general physio-chemical nature of sample toxicants. Phase II employs methods to measure toxicants via different analytical methods, and Phase III consists of techniques to confirm that the suspect toxicants identified in Phases I and II of the TIE actually are responsible for toxicity. These TIE procedures have been used to investigate the toxicity of a variety of samples, including sediments. Herein we present a brief conceptual overview of the TIE process, and discuss specific considerations associated with sediment TIE research. Points addressed include: (a) selection and preparation of appropriate test fractions, (b) use of benthic organisms for sediment TIE work, and (c) methods for the identification of common sediment contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. J., R. A.Kimerle & R. G.Mosher, 1985. Aquatic safety assessment of chemicals sorbed to sediments. In: R. D.Cardwell, R.Purdy & R. C.Bahner (eds), Aquatic Toxicology and Hazard Assessment: Seventh Symposium. pp. 429–453. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Amato, J. R., D. I.Mount, E. J.Durhan, M. T.Lukasewycz, G. T.Ankley & E. D.Robert, 1992 An example of the identification of diazinon as a primary toxicant in an effluent. Environ. Toxicol. Chem. 11: 209–216.

    Google Scholar 

  • ASTM, 1994. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM 1994 Annual Book of Standards, E1383-94, Philadelphia, PA.

  • ASTM, 1995. Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing, ASTM 1995 Annual Book of Standards, E1391-94, Philadelphia, PA.

  • Ankley, G. T. & L. P.Burkhard, 1992. Identification of surfactants as toxicants in a primary effluent. Environ. Toxicol. Chem. 11: 1235–1248.

    Google Scholar 

  • Ankley, G. T. & M. K.Schubauer-Berigan, 1994. Comparison of techniques for the isolation of sediment pore water for toxicity testing. Arch. Environ. Contam. Toxicol. 27: 507–512.

    Google Scholar 

  • Ankley, G. T., AKatko & J. W.Arthur, 1990a. Identification of ammonia as an important sediment-associated toxicant in the lower Fox River and Green Bay, Wisconsin. Environ. Toxicol. Chem. 9: 313–322.

    Google Scholar 

  • Ankley, G. T., M. T.Lukasewyez, G. S.Peterson & D. A.Jenson, 1990b. Behavior of surfactants in toxicity identification evaluations. Chemosphere 21: 3–12.

    Google Scholar 

  • Ankley, G. T., G. L.Phipps, E. N.Leonard, D. A.Benoit, V. R.Mattson, P. A.Kosian, A. M.Cotter, J. R.Dierkes, D. J.Hansen & J. D.Mahony, 1991a. Acid volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ. Toxicol. Chem. 10: 1299–1307.

    Google Scholar 

  • Ankley, G. T., M. K.Schubauer-Berigan & J. R.Dierkes, 1991b. Predicting the toxicity of bulk sediments to aquatic organisms with aqueous test fractions: pore water versus elutriate. Environ. Toxicol. Chem. 10: 1359–1366.

    Google Scholar 

  • Ankley, G. T., J. R.Dierkes, D. A.Jensen & G. S.Peterson, 1991c. Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicol. Environ. Safety 21: 266–274.

    Google Scholar 

  • Ankley, G. T., M. K.Schubauer-Berigan & R. A.Hoke, 1992. Use of toxicity identification evaluation techniques to identify dredged material disposal options: a proposed approach. Environ. Manage. 16: 1–6.

    Google Scholar 

  • Ankley, G. T., V. R.Mattson, E. N.Leonard, C. W.West & J. L.Bennett, 1993. Predicting the bioavailability of copper in freshwater sediments: evaluation of the role of acid volatile sulfide. Environ. Toxicol. Chem. 12: 315–320.

    Google Scholar 

  • Ankley, G. T., D. J.Call, J. S.Cox, M. D.Kahl, R. A.Hoke & P. A.Kosian, 1994. Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ. Toxicol. Chem. 13: 621–626.

    Google Scholar 

  • Ankley, G. T., M. K. Schubauer-Berigan & P. D. Monson, 1995. Influence of pH and harness on toxicity of ammonia to the amphipod Hyalella azteca. Can. J. Fish. Aquat. Sci. (in press).

  • Batley, G. E. & M. S.Giles, 1980. A solvent displacement technique for the separation of sediment interstitial waters. In: R. A.Baker, (ed.), Contaminants and Sediments, Vol II. pp. 101–118. Ann Arbor Sci., Ann Arbor, MI.

    Google Scholar 

  • Benes, P. & E.Steinnes, 1974. In situ dialysis for the determination of the state of trace elements in natural waters. Water Res. 8: 947–953.

    Google Scholar 

  • Bischoff, J. L., R. E.Greer & A. O.Luistro, 1970. Composition of interstitial waters of marine sediments: temperature of squeezing effect. Science 167: 1245–1246.

    Google Scholar 

  • Broderius, S. J., L. L.SmithJr & D. T.Lind, 1977. Relative toxicity of free cyanide and dissolved sulfide forms to the fathead minnow (Pimephales promelas). J. Fish. Res. Board. Can. 341: 2323–2332.

    Google Scholar 

  • Burgess, R. M., K. A.Schweitzer, R. A.McKinney & D. K.Phelps, 1993. Contaminated marine sediments: water column and interstitial toxic effects. Environ. Toxicol. Chem. 12: 127–128.

    Google Scholar 

  • Burkhard, L. R. & G. T.Ankley, 1989. Identifying toxicants: NETAC's toxicity-based approach. Environ. Sci. Technol. 23: 1438–1443.

    Google Scholar 

  • Burkhard, L. P. & J. J.Jenson, 1993. Identification of ammonia, chlorine and diazinon as toxicants in a municipal effluent. Arch. Environ. Contam. Toxicol. 25: 506–515.

    Google Scholar 

  • Burkhard, L. P., E. J.Durhan & M. T.Lukasewyez, 1991. Identification of nonpolar toxicants in effluent using toxicity-based fractionation with gas chromatography/mass spectrometry. Anal. Chem. 63: 277–283.

    Google Scholar 

  • Burton, G. A., B. L.Stemmer, K. L.Winks, P. E.Ross & L. C.Burnett, 1989. A multirophic level evaluation of sediment toxicity in Waukegan and Indiana Harbors. Environ. Toxicol. Chem. 8: 1057–1066.

    Google Scholar 

  • Campbell, P. G. C. & P. M.Stokes, 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aq. Sci. 42: 2034–2049.

    Google Scholar 

  • Capel, P. D., 1986. Distribution and digenesis of chlorinated hydrocarbons in sediments. Ph.D. Dissertation. University of Minnesota, St. Paul, MN.

    Google Scholar 

  • Carignan, R., F.Rapin & A.Tessier, 1985. Sediment porewater sampling for metal analysis: a comparison of techniques. Geochim. et Cosmochim. Acta 49: 2493–2497.

    Google Scholar 

  • Carr, R. S. & D. C.Chapman, 1992. Comparison of whole sediment and porewater toxicity tests for assessing the quality of estuarine sediments. Chem. Ecol. 7: 19–30.

    Google Scholar 

  • Carr, R. S. & D. C.Chapman, 1995. Comparison of methods for conducting marine and estuarine sediment pore water toxicity tests I, extraction, storage and handling techniques. Arch. Environ. Contam. Toxicol. 28: 69–77.

    Google Scholar 

  • Chapman, P. M. & R.Fink, 1984. Effects of Puget Sound sediments and their elutriates on the life cycle of Capitella capitata. Bull. Environ. Contam. Toxicol. 33: 451–459.

    Google Scholar 

  • Collyard, S. A., G. T.Ankley, R. A.Hoke & T.Goldenstein, 1994. Influence of age on the relative sensitivity of Hyalella azieca to diazinon, alkylphenol ethoxylates, copper, cadmium and zinc. Arch. Environ. Cont. Toxicol. 26: 110–113.

    Google Scholar 

  • Dave, G., 1992. Sediment toxicity and heavy metals in eleven lime reference lakes of Sweden. Water, Air, Soil Pollut. 63: 187–200.

    Google Scholar 

  • DiGiano, F., C.Clarkin, M.Charles, M.Maerker, D.Francisco & C.LaRocca, 1992. Testing of the EPA toxicity identification evaluation protocol in the textile dye manufacturing industry. Water Sci. Technol. 25: 55–63.

    Google Scholar 

  • DiToro, D. M., J. D.Manony, D. J.Hansen, K. J.Scott, M. B.Hicks, S. M.Mays & M. S.Redmond, 1990. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol. Chem. 9: 483–498.

    Google Scholar 

  • DiToro, D. M., C. S.Zarba, D. J.Hansen, W. J.Berry, R. C.Swartz, C. E.Cowan, S. P.Pavlou, H. E.Allen, N. A.Thomas & P.Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning theory. Environ. Toxicol. Chem. 10: 1541–1583.

    Google Scholar 

  • Doe, K. G., W. R.Emst, W. R.Parker, G. R. J.Julien & P. A.Hennigar, 1988. Influence of pH on the acute lethality of fenitrothion, 2,4-D and aminocarb and some pH-altered sublethal effects of aminocarb on rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 45: 287–293.

    Google Scholar 

  • Doerger, J. U., J. R.Meier, R. A.Dobbs, R. D.Johnson & G. T.Ankley, 1992. Toxicity reduction evaluation at a municipal wastewater treatment plant using mutagenicity as an endpoint. Arch. Environ. Contam. Toxicol. 22: 384–388.

    Google Scholar 

  • Doi, J. & D. R.Grothe, 1987. Use of fractionation/chemical analysis schemes for plant effluent toxicity evaluation. In G. W.Suter, (ed.), Aquatic Toxicology and Environmental Fate. pp. 1–14. ASTM STP 1007. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Durhan, E. J., M. T.Lukasewyez & J. R.Amato, 1990. Extraction and concentration of nonpolar organic toxicants from effluents using solid phase extraction. Environ. Toxicol. Chem. 9: 463–466.

    Google Scholar 

  • Durhan, E. J., M. T.Lukasewycz & S.Baker, 1993. Alternatives to methanol-water elution of solid phase extraction columns for the fractionation of high log Kow organic compounds in aqueous environmental samples. J. Chromatogr 629: 67–74.

    Google Scholar 

  • Ferguson, W. J., K. I.Braunschweiger, W. R.Braunschweiger, J. R.Smith, J. J.McCormick, C. C.Wasmann, N. P.Jarvis, D. H.Bell & N. E.Good, 1980. Hydrogen ion buffers for biological research. Anal. Biochem. 104: 300–310.

    Google Scholar 

  • Fisher, S. W. & R. W.Wadleigh, 1986. Effects of pH on the acute toxicity and uptake of 14C pentachlorophenol in the midge, Chironomus riparius. Ecotoxicol. Environ. Safety. 11: 1–18.

    Google Scholar 

  • Giesy, J. P. & R. A.Hoke, 1989. Freshwater sediment toxicity bioassessment: rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.

    Google Scholar 

  • Green, A. S., G. T.Chandler & E. R.Blood, 1993. Aqueousporewater-, and sediment-phase cadmium: toxicity relationships for a meiobenthic copepod. Environ. Toxicol. Chem. 12: 1497–1506.

    Google Scholar 

  • Hockett, J. R. & D. R. Mount, 1995. Use of metal chelating agents to differentiate among sources of acute aquatic toxicity. Submitted.

  • Hoke, R. A., G. T.Ankley, A. M.Cotter, T.Goldenstein, P. A.Kosian, G. L.Phipps & F. M.VenderMeiden, 1994. Evaluation of equilibrium partioning theory for predicting the acute toxicity of field-collected sediments contaminated with DDT, DDE and DDD to the amphipod, Hyalella azteca. Environ. Toxicol. Chem. 13: 157–166.

    Google Scholar 

  • Jop, K. M., T. Z.Kendall, A. M.Askew & R. B.Foster, 1991. Use of fractionation procedures and extensive chemical analysis for toxicity identification of a chemical plant effluent. Environ. Toxicol. Chem. 10: 981–990.

    Google Scholar 

  • Junk, G. A. & J. J.Richard, 1988. Organics in water: solid phase extraction on a small scale. Anal. Chem. 60: 451–454.

    Google Scholar 

  • Kuehl, D. W., G. T.Ankley, L. P.Burkhard & D. A.Jensen, 1990. Bioassay directed characterization of the acute toxicity of a creosote leachate. Hazardous Waste Hazardous Mater. 7: 283–291.

    Google Scholar 

  • Long, E. R., M. F.Buchman, S. M.Bay, R. J.Breteler, R. S.Carr, P. M.Chapman, J. E.Hose, A. L.Lissner, J.Scott & D. A.Wolfe, 1990. Comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California, Environ. Toxicol. Chem. 9: 1193–1214.

    Google Scholar 

  • Lukasewycz, M. T. & E. J.Durhan, 1992. Strategies for the identification of non-polar toxicants in aqueous environmental samples using toxicity-based fractionation and gas chromatography/mass spectrometry. J. Chromatogr. 580: 215–228.

    Google Scholar 

  • Maltby, L., A. B. A.Boxall, D. M.Forrow, P.Calow & C. I.Betton. 1995. The effects of motorway runoff on freshwater ecosystems: 2 identifying major toxicants. Environ. Toxicol. Chem. 14: 1093–1101.

    Google Scholar 

  • Mount, D. R. & D. I.Mount, 1992. A simple method of pH control for static and static renewal aquatic toxicity tests. Environ. Toxicol. Chem. 11: 609–614.

    Google Scholar 

  • Mudroch, A. & S. A.MacKnight. 1991. CRC Handbook of Techniques for Aquatic Sediments Sampling. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Neilson, A. H., A. S.Allard, S.Fischer, M.Malmberg & T.Viktor, 1990. Incorporation of a subacute test with zebra fish into a hierarchical system for evaluating the effect of toxicants in the aquatic environment. Ecotoxicol. Environ. Safety. 20: 82–97.

    Google Scholar 

  • Norberg-King, T. J., E. J.Durhan, G. T.Ankley & E.Robert, 1991. Application of toxicity identification evaluation procedures to the ambient waters of the Colusa Basin Drain. Environ. Tox. Chem. 10: 891–901.

    Google Scholar 

  • Oikari, A. O. J., 1987. Acute lethal toxicity of some reference chemicals to fresh water fishes of Scandanavia. Bull. Environ. Contam. Toxicol. 39: 23–28.

    Google Scholar 

  • Phipps, G. L., V. R.Mattson & G. T.Ankley, 1995. Relative sensltivity of three freshwater benthic macroin vertebrates to ten contaminants. Arch. Environ. Contam. Toxicol. 28: 281–286.

    Google Scholar 

  • Schubauer-Berigan, M. K. & G. T.Ankley, 1991. The contribution of ammonia, metals and nonpolar organic compounds to the toxicity of sediment interstitial water from an Illinois River tributary. Environ. Toxicol. Chem. 10: 925–939.

    Google Scholar 

  • Schubauer-Berigan, M. K., J. R. Dierkes & G. T. Ankley, 1990. Toxicity identification evaluation of contaminated sediments in Buffalo River, NY and Saginaw River, MI. National Effluent Toxicity Assessment Center Technical Report 20-90. Duluth, MN. 107 pp.

  • Schubauer-Berigan, M. K., J. R.Amato, G. T.Ankley, S. E.Baker, L. P.Burkhard, J. R.Dierkes, J. J.Jensen, M. T.Lukasewycz & T. J.Norberg-King, 1993a. The behavior and identification of toxic metals in complex mixtures: examples from effluent and sediment pore water toxicity identification evaluations. Arch. Environ. Contam. Toxicol. 24: 298–306.

    Google Scholar 

  • Schubauer-Berigan, M. K., J. R.Dierkes, P. D.Monson & G. T.Ankley, 1993b. The pH-dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegatus. Environ. Toxicol. Chem. 12: 1261–1266.

    Google Scholar 

  • Schubauer-Berigan, M. K., P. D.Monson, C. W.West & G. T.Ankley, 1995. Influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Environ. Toxicol. Chem. 14: 713–718.

    Google Scholar 

  • Schults, D. W., L. M.Smith, S. P.Ferraro, F. A.Roberts & C. K.Poindexter, 1992. A comparison of methods for measuring trace organic compounds and metals in interstitial water. Water Res. 26: 989–995.

    Google Scholar 

  • Stumm, W. & J. J.Morgan, 1981. Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters. John Wiley & Sons, New York, NY. 583 pp.

    Google Scholar 

  • Swartz, R. C., G. R.Ditsworth, D. W.Schults & J. O.Lamberson, 1985. Sediment toxicity to a marine infaunal amphipod: cadmium and its interaction with sewage sludge. Mar. Environ. Res. 18: 133–153.

    Google Scholar 

  • Swartz, R. C., D. W.Schults, T. H.DeWitt, G. R.Ditsworth & J. O.Lamberson, 1990. Toxicity of fluoranthene in sediment to marine amphipods: a test of the equilibrium partitioning approach to sediment quality criteria. Environ. Toxicol. Chem. 9: 1071–1080.

    Google Scholar 

  • U.S. Army Corps of Engineers/Environmental Protection Agency Committee on Criteria for Dredged Material, 1977. Ecological evaluation of proposed discharge of dredged material into open waters: implementation manual for Section 103 of Public Law 92–532. Environmental Effects Laboratory, U.S. Army Engineer Waterways Experiments Station, Vicksburg, MS.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1985. Ambient water quality eriteria for ammonia. EPA-440/5085–001. Environmental Protection Agency, Environmental Research Laboratory-Duluth, MN, and the Criteria and Standards Division, Washington, D. C.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1988. Methods for aquatic toxicity identification evaluations: phase I toxicity characterization procedures. EPA-600/3–88–035. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1989a Methods for aquatic toxicity identification evaluations: phase II toxicity identification procedures. EPA-600/3–88–036. Envrionmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1989b. Methods for aquatic toxicity identification evaluations: Phase III toxicity confirmation procedures. EPA-600/3–88–037. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1991a. Methods for aquatic toxicity identification evaluations: phase I toxicity characterization procedures. Second Edition. EPA-600/6–91–003. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1991b Sediment toxicity identification evaluation: phase I (characterization), phase II (identification) and phase III (confirmation) modifications of effluent procedures. EPA-600/6–91–007. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1992. Toxicity identification evaluation: characterization of chronically toxic effluents, phase I. EPA/600/6–91–005. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1993a. Methods for aquatic toxicity identification evaluations: phase II toxicity identification procedures for samples exhibiting acute and chronic toxicity. EPA-600/R-92–080. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1993b. Methods for aquatic toxicity identification evaluations: phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity. EPA-600/R-92–081. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • U.S. Environmental Protection Agency, 1994. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA-600/R-94–024. Environmental Research Laboratory-Duluth, MN.

    Google Scholar 

  • Well, M. J. M. & J. L.Michael, 1987, Reversed-phase solid-phase extraction for aqueous environmental sample preparation in herbicide residue analysis. J. Chromatogr. Sci. 25: 345–350.

    Google Scholar 

  • Word, J. Q., J. A. Ward, L. M. Franklin, V. I. Cullinan & S. L. Kiesser, 1987. Evaluation of the equilibrium partitioning theory for estimating the toxicity of the nonpolar organic compound DDT to the sediment dwelling amphipodRhepoxynius abronius. Final report submitted by Battelle Washington Environmental Programm Office to U.S. Environmental Protection Agency, Criteria and Standards Division, Washington, DC.

  • Zuiderveen, J. A. & W. J. Birge, 1992. Nitrilotriacetic acid and other chelators: their possible uses in chronic TIE's with Ceriodaphnia, 13th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Abstract, p. 259.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankley, G.T., Schubauer-Berigan, M.K. Background and overview of current sediment toxicity identification evaluation procedures. J Aquat Ecosyst Stress Recov 4, 133–149 (1995). https://doi.org/10.1007/BF00116649

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00116649

Key words

Navigation