Skip to main content

Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment

  • Chapter
Reviews of Environmental Contamination and Toxicology Volume 239

Abstract

A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.

We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure—and effect modelling is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WJ, Kimerle RA, Barnett JW (1992) Sediment quality and aquatic life assessment. Environ Sci Technol 26:1864–1875. doi:10.1021/es00034a001

    Article  CAS  Google Scholar 

  • Adriaanse PI (1996) Fate of pesticides in field ditches: the TOXSWA simulation model vol 90. SC-DLO, Wageningen

    Google Scholar 

  • Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18. doi:10.1006/eesa.1999.1869

    Article  CAS  Google Scholar 

  • Aldenberg T, Jaworska JS, Traas TP, Posthuma L (2002) Normal species sensitivity distributions and probabilistic ecological risk assessment. In: Posthuma L, Traas T, Suter G (eds) Species sensitivity distributions in risk assessment. CRC Press, Boca Raton, FL, pp 49–102

    Google Scholar 

  • Allen YT, Thain JE, Haworth S, Barry J (2007) Development and application of long-term sublethal whole sediment tests with Arenicola marina and Corophium volutator using Ivermectin as the test compound. Environ Pollut 146:92–99. doi:10.1016/j.envpol.2006.06.007

    Article  CAS  Google Scholar 

  • Amweg EL, Weston DP (2007) Whole-sediment toxicity identification evaluation tools for pyrethroid insecticides: I. Piperonyl butoxide addition. Environ Toxicol Chem 26:2389–2396. doi:10.1897/07-017r.1

    Article  CAS  Google Scholar 

  • Anderson BS, Lowe S, Phillips BM, Hunt JW, Vorhees J, Clark S, Clark S, Tjeerdema RS (2008) Relative sensitivities of toxicity test protocols with the amphipods Eohaustorius estuarius and Ampelisca abdita. Ecotoxicol Environ Saf 69:24–31. doi:10.1016/j.ecoenv.2007.05.005

    Article  CAS  Google Scholar 

  • Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13:621–626. doi:10.1002/etc.5620130411

    Article  CAS  Google Scholar 

  • Ankley GT et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. doi:10.1002/etc.34

    Article  CAS  Google Scholar 

  • Ashauer R, Boxall A, Brown C (2006) Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environ Toxicol Chem 25:1899–1912. doi:10.1897/05-393r.1

    Article  CAS  Google Scholar 

  • ASTM (2013) ASTM E2591-07(2013), Standard guide for conducting whole sediment toxicity tests with amphibians. ASTM, West Conshohocken, PA. doi:10.1520/E2591-07R13

    Book  Google Scholar 

  • Bal-Price A et al (2014) Considerations in the development of in vitro toxicity testing methods intended for regulatory use. In: In vitro toxicology systems, Methods in pharmacology and toxicology. Springer, New York, NY, pp 551–569. doi:10.1007/978-1-4939-0521-8_25

    Chapter  Google Scholar 

  • Bartell SM, Pastorok RA, Akçakaya HR, Regan H, Ferson S, Mackay C (2003) Realism and relevance of ecological models used in chemical risk assessment. Hum Ecol Risk Assess 9:907–938. doi:10.1080/713610016

    Article  Google Scholar 

  • Bartlett AJ, Borgmann U, Dixon DG, Batchelor SP, Maguire RJ (2004) Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: survival, growth, and reproduction. Environ Toxicol Chem 23:2878–2888. doi:10.1897/03-521.1

    Article  Google Scholar 

  • Baveco JM, Norman S, Roessink I, Galic N, Van den Brink PJ (2014) Comparing population recovery after insecticide exposure for four aquatic invertebrate species using models of different complexity. Environ Toxicol Chem 33:1517–1528. doi:10.1002/etc.2605

    Article  CAS  Google Scholar 

  • Beketov MA, Cedergreen N, Wick LY, Kattwinkel M, Duquesne S, Liess M (2012) Sediment toxicity testing for prospective risk assessment—a new framework and how to establish it. Hum Ecol Risk Assess 19:98–117. doi:10.1080/10807039.2012.683741

    Article  CAS  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the Lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600. doi:10.1021/es302763x

    Article  CAS  Google Scholar 

  • Best EPH, Boyd WA (1999) A simulation model for growth of the submersed aquatic macrophyte Eurasian Watermilfoil (Myriophyllum spicatum L.). Technical Report A-99-3 US Army Corps of Engineers

    Google Scholar 

  • Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE (2014) Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar Environ Res 96:81–91. doi:10.1016/j.marenvres.2013.10.008

    Article  CAS  Google Scholar 

  • Boesten JJTI, Köpp H, Adriaanse PI, Brock TCM, Forbes VE (2007) Conceptual model for improving the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotoxicol Environ Saf 66:291–308

    Article  CAS  Google Scholar 

  • Brandes L, den Hollander H, van de Meent D (1996) SimpleBox 2.0: a nested multimedia fate model for evaluating the environmental fate of chemicals. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven

    Google Scholar 

  • Brinke M, Hoss S, Fink G, Ternes TA, Heininger P, Traunspurger W (2010) Assessing effects of the pharmaceutical ivermectin on meiobenthic communities using freshwater microcosms. Aquat Toxicol 99:126–137. doi:10.1016/j.aquatox.2010.04.008

    Article  CAS  Google Scholar 

  • Brock TCM (2013) Priorities to improve the ecological risk assessment and management for pesticides in surface water. Integr Environ Assess Manag 9:e64–e74. doi:10.1002/ieam.1429

    Article  CAS  Google Scholar 

  • Castano A et al (2003) The use of fish cells in ecotoxicology. The report and recommendations of ECVAM Workshop 47. Altern Lab Anim 31:317–351

    CAS  Google Scholar 

  • Clemmens A, Holly F, Schuurmans W (1993) Description and evaluation of program: duflow. J Irrig Drain Eng 119:724–734. doi:10.1061/(ASCE)0733-9437(1993)119:4(724)

    Article  Google Scholar 

  • Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895. doi:10.1021/es050191b

    Article  CAS  Google Scholar 

  • Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. Bioscience 49:119–127

    Article  Google Scholar 

  • Covich AP et al (2004) The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775. doi:10.1641/0006-3568(2004)054[0767:trobit]2.0.co;2

    Article  Google Scholar 

  • Crum SJ, Brock TC (1994) Fate of chlorpyrifos in indoor microcosms and outdoor experimental ditches. In: Hill I, Heimbach F, Leeuwangh P, Matthiesen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Chelsea, MI, pp 315–322

    Google Scholar 

  • Davies IM, Gillibrand PA, McHenery JG, Rae GH (1998) Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture 163:29–46. doi:10.1016/S0044-8486(98)00211-7

    Article  CAS  Google Scholar 

  • Day KE, Maguire RJ, Milani D, Batchelor SP (1998) Toxicity of tributyltin to four species of freshwater benthic invertebrates using spiked sediment bioassays. Water Qual Res J Can 33:111–132

    CAS  Google Scholar 

  • De Laender F, Morselli M, Baveco H, Van den Brink PJ, Di Guardo A (2015) Theoretically exploring direct and indirect chemical effects across ecological and exposure scenarios using mechanistic fate and effects modelling. Environ Int 74:181–190. doi:10.1016/j.envint.2014.10.012

    Article  CAS  Google Scholar 

  • Di Guardo A, Hermens JLM (2013) Challenges for exposure prediction in ecological risk assessment. Integr Environ Assess Manag 9:e4–e14. doi:10.1002/ieam.1442

    Article  Google Scholar 

  • Di Toro D et al (1991) Technical basis for the equilibrium partitioning method for establishing sediment quality criteria. Environ Toxicol Chem 11:1541–1583

    Article  Google Scholar 

  • Diepens NJ, Beltman W, Koelmans AA, Van den Brink PJ, Baveco H. Under revision. Dynamics and recovery of a sediment exposed Chironomus riparius population: A modelling approach Environmental Pollution

    Google Scholar 

  • Diepens NJ, Dimitrov MR, Koelmans AA, Smidt H. Online. Molecular assessment of bacterial community dynamics and functional endpoints during sediment bioaccumulation tests. Environmental Science & Technology. doi:10.1021/acs.est.5b02992

    Article  CAS  Google Scholar 

  • Diepens NJ, Van den Heuvel-Greve M, Koelmans AA. Online. Modeling of bioaccumulation in marine benthic invertebrates using a multispecies experimental approach. Environmental Science & Technology. doi: 10.1021/acs.est.5b02500

    Article  CAS  Google Scholar 

  • Diepens N, Arts G, Focks A, Koelmans AA (2014a) Uptake, translocation and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data. Environ Sci Technol 48:12344–12353. doi:10.1021/es503121x

    Article  CAS  Google Scholar 

  • Diepens NJ, Arts GHP, Brock TCM, Smidt H, Van den Brink PJ, Van den Heuvel-Greve MJ, Koelmans AA (2014b) Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review. Crit Rev Environ Sci Technol 44:255–302. doi:10.1080/01496395.2012.718945

    Article  Google Scholar 

  • Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003) Toxicity of triphenyltin and tributyltin to the freshwater mud snail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22:145–152. doi:10.1002/etc.5620220119

    Article  CAS  Google Scholar 

  • ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Guidance for the implementation of REACH. European Chemicals Agency, Helsinki

    Google Scholar 

  • ECHA (2014a) Guidance on information requirements and chemical safety assessment. Chapter R.7b: Endpoint specific guidance. European chemicals agency, Helsinki

    Google Scholar 

  • ECHA (2014b) Guidance on the biocidal products regulation. Volume IV: Environment: Part A: Information requirements. European chemicals agency, Helsinki

    Google Scholar 

  • ECHA (2014c) ECHA Principles for environmental risk assessment of the sediment compartment. In: Jose V, Tarazona BV, Janssen C, De Laender F, Vangheluwe M, Knight D (eds) Proceedings of the topical scientific workshop, 7-8 May 2013. European Chemicals Agency, Helsinki

    Google Scholar 

  • EFSA (2005) Opinion of the scientific panel on plant health, plant protection products and their residues on a request from the EFSA related to the assessment of the acute and chronic risk to aquatic organisms with regard to the possibility of lowering the assessment factor if additional species were tested. EFSA J 301:1–45

    Google Scholar 

  • EFSA (2009) The usefulness of total concentrations and pore water concentrations of pesticides in soil as metrics for the assessment of ecotoxicological effects. EFSA J 922:1–90

    Google Scholar 

  • EFSA (2010a) Scientific opinion on outline proposals for assessment of exposure of organisms to substances in soil. EFSA J 8:1442–1478

    Article  Google Scholar 

  • EFSA (2010b) Scientific Opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the Guidance Documents on Aquatic and Terrestrial Ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002). EFSA J 8:55. doi:10.2903/j

    Google Scholar 

  • EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge of field surface waters. EFSA J 11:186

    Google Scholar 

  • EFSA (2014a) EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA J 12:37. doi:10.2903/j.efsa.2014.3662

    Google Scholar 

  • EFSA (2014b) Scientific Opinion on good modelling practice in the context of mechanistic effect models for risk assessment of plant protection products. EFSA J 12:92. doi:10.2903/j.efsa.2014.3589

    Article  Google Scholar 

  • EFSA (2015) Scientific opinion on the effect assessment for pesticides on sediment organisms in edge-of-field surface water. EFSA J 13:145. doi:10.2903/j.efsa.2015.4176

    Article  CAS  Google Scholar 

  • Egeler P, Gilberg D, Fink G, Duis K (2010) Chronic toxicity of ivermectin to the benthic invertebrates Chironomus riparius and Lumbriculus variegatus. J Soils Sediments 10:368–376. doi:10.1007/s11368-010-0197-3

    Article  CAS  Google Scholar 

  • EMEA (2006) Guideline on the environmental risk assessment of medicinal products for human use EMEA/CHMP/SWP/4447/00. European Medicines Agency, London

    Google Scholar 

  • EPA (1996a) Ecological effects test guidelines OPPTS 850.1740. Whole sediment acute toxicity invertebrates, marine. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • EPA (1996b) Ecological effects test guidelines: OPPTS 850.1735: whole sediment acute toxicity invertebrates, freshwater. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • EPA U (1997) Ambient water quality criteria for tributyltin – draft. EPA, Washington, DC

    Google Scholar 

  • European Commission (2003a) Technical Guidance Document (TGD) in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European parliament and the council concerning the placing of biocidal products on the market vol Edition 2. EUR 20418 EN/2. European Commission Joint Research Centre, Ispra

    Google Scholar 

  • European Commission (2003b) Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC, Commission Directive 98/8/EC, Commission Regulation (EC) No 1488/94, Commission Directive 93/67/EEC. European Commission, Ispra

    Google Scholar 

  • European Commission (2005) Common Implementation Strategy for the Water Framework Directive. Environmental Quality Standards (EQS) Substance Data Sheet Tributyltin compounds. European Commission, Ispra

    Google Scholar 

  • European Commission (2011a) Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Technical Guidance Document for deriving Environmental Quality Standards, Technical Report- 2011-055

    Google Scholar 

  • European Commission (2011b) Technical guidance document for deriving environmental quality standards vol Draft version 5.0 (29 January 2010). European Commission Joint Research Centre, Ispra. doi:10.2779/43816

    Book  Google Scholar 

  • Faber D, Bruns E (2015) Future challenges in sediment toxicity testing for the risk assessment of plant protection products. Poster. Paper presented at the SETAC Europe 25th Annual Meeting, 3–7 May 2015, Barcelona Spain

    Google Scholar 

  • Feijtel T et al (1997) Development of a geography-referenced regional exposure assessment tool for European rivers - great-er contribution to great-er #1. Chemosphere 34:2351–2373. doi:10.1016/S0045-6535(97)00048-9

    Article  CAS  Google Scholar 

  • Fenchel TM (1978) The ecology of micro-and meiobenthos. Annu Rev Ecol Syst 9:99–121. doi:10.2307/2096745

    Article  Google Scholar 

  • Focks A, Horst MT, Van de Berg E, Baveco H, Van den Brink PJ (2014) Integrating chemical fate and population-level effect models for pesticides on the landscape scale: new options for risk assessment. Ecol Model 280:102

    Article  CAS  Google Scholar 

  • FOCUS (2007) Landscape and mitigation factors in aquatic risk assessment. Volume 1. Extended summary and recommendations, volume 2 Detailed Technical Reviews. Report of the FOCUS working group on landscape and mitigation factors in ecological risk assessment. EC Document Reference SANCO/10422/2005

    Google Scholar 

  • Fojut T, Vasquez M, Poulsen A, Tjeerdema R (2013) Methods for deriving pesticide aquatic life criteria for sediments. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 224. Springer, New York, NY, pp 97–175. doi:10.1007/978-1-4614-5882-1_4

    Chapter  Google Scholar 

  • Forbes VE, Calow P (2013) Use of the ecosystem services concept in ecological risk assessment of chemicals. Integr Environ Assess Manag 9:269–275. doi:10.1002/ieam.1368

    Article  CAS  Google Scholar 

  • Forbes VE et al (2011) Adding value to ecological risk assessment with population modeling. Hum Ecol Risk Assess 17:287–299. doi:10.1080/10807039.2011.552391

    Article  CAS  Google Scholar 

  • Galic N, Hommen U, Baveco JM, Van den Brink PJ (2010) Potential application of population models in the European ecological risk assessment of chemicals II: Review of models and their potential to address environmental protection aims. Integr Environ Assess Manag 6:338–360. doi:10.1002/ieam.68

    Article  CAS  Google Scholar 

  • Galic N, Hengeveld GM, Van den Brink PJ, Schmolke A, Thorbek P, Bruns E, Baveco HM (2013) Persistence of aquatic insects across managed landscapes: effects of landscape permeability on re-colonization and population recovery. PLoS One 8:e54584

    Article  CAS  Google Scholar 

  • Garric J et al (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910. doi:10.1016/j.chemosphere.2007.05.070

    Article  CAS  Google Scholar 

  • Gaskell PN, Brooks AC, Maltby L (2007) Variation in the bioaccumulation of a sediment-sorbed hydrophobic compound by benthic macroinvertebrates: patterns and mechanisms. Environ Sci Technol 41:1783–1789. doi:10.1021/es061934b

    Article  CAS  Google Scholar 

  • Gebremariam S, Beutel M, Yonge D, Flury M, Harsh J (2012) Adsorption and desorption of chlorpyrifos to soils and sediments, vol 215, Reviews of environmental contamination and toxicology. Springer, New York, NY, pp 123–175. doi:10.1007/978-1-4614-1463-6_3

    Book  Google Scholar 

  • Gérino M et al (2003) Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification. Vie et milieu 53:221–231

    Google Scholar 

  • Giddings JM, Arts G, Hommen U (2013) The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions. Integr Environ Assess Manag 9:308–318. doi:10.1002/ieam.1387

    Article  CAS  Google Scholar 

  • Giesy JP, Graney RL (1989) Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188–189:21–60. doi:10.1007/bf00027770

    Article  Google Scholar 

  • Gobas F, McNeil EJ, Lovettdoust L, Haffner GD (1991) Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ Sci Technol 25:924–929. doi:10.1021/es00017a015

    Article  CAS  Google Scholar 

  • Gray JS (1981) The ecology of marine sediments: an introduction to the structure and function of benthic communities. Cambridge University Press, Cambridge

    Google Scholar 

  • Green AS, Chandler TG, Piegorsch WW (1996) Life-stage-specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem 15:1182–1188. doi:10.1002/etc.5620150725

    Article  CAS  Google Scholar 

  • Groothuis FA, Heringa MB, Nicol B, Hermens JLM, Blaauboer BJ, Kramer NI (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations. Toxicology 332:30–40. doi:10.1016/j.tox.2013.08.012

    Article  CAS  Google Scholar 

  • Guillén D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D (2012) Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective. Sci Total Environ 440:236–252. doi:10.1016/j.scitotenv.2012.06.064

    Article  CAS  Google Scholar 

  • Hall LW, Scott MC, Killen WD, Unger MA (2000) A probabilistic ecological risk assessment of tributyltin in surface waters of the Chesapeake Bay watershed. Hum Ecol Risk Assess 6:141–179. doi:10.1080/10807030091124482

    Article  CAS  Google Scholar 

  • Hallare A, Seiler T-B, Hollert H (2011) The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review. J Soils Sediments 11:141–173. doi:10.1007/s11368-010-0302-7

    Article  CAS  Google Scholar 

  • Halley BA, Jacob TA, Lu AYH (1989) The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18:1543–1563. doi:10.1016/0045-6535(89)90045-3

    Article  CAS  Google Scholar 

  • Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058. doi:10.1897/08-291.1

    Article  CAS  Google Scholar 

  • Hecht SA, Gunnarsson JS, Boese BL, Lamberson JO, Schaffner C, Giger W, Jepson PC (2004) Influences of sedimentary organic matter quality on the bioaccumulation of 4-nonylphenol by estuarine amphipods. Environ Toxicol Chem 23:865–873. doi:10.1897/03-220

    Article  CAS  Google Scholar 

  • Heine S, Schmitt W, Schäffer A, Görlitz G, Buresová H, Arts G, Preuss TG (2015) Mechanistic modelling of toxicokinetic processes within Myriophyllum spicatum. Chemosphere 120:292–298. doi:10.1016/j.chemosphere.2014.07.065

    Article  CAS  Google Scholar 

  • Hendriks AJ (1995) Modelling equilibrium concentrations of microcontaminants in organisms of the Rhine delta: can average field residues in the aquatic food chain be predicted from laboratory accumulation? Aquat Toxicol 31:1–25. doi:10.1016/0166-445X(94)00052-R

    Article  CAS  Google Scholar 

  • Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut 157:110–116. doi:10.1016/j.envpol.2008.07.023

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Ulrich M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207. doi:10.1065/jss2003.09.085

    Article  Google Scholar 

  • Hommen U, Baveco JM, Galic N, Van den Brink PJ (2010) Potential application of ecological models in the European environmental risk assessment of chemicals I: Review of protection goals in EU directives and regulations. Integr Environ Assess Manag 6:325–337. doi:10.1002/ieam.69

    Article  CAS  Google Scholar 

  • Hooftman RN, Van de Guchte K, Roghair CJ (1993) Development of ecotoxicological test systems to assess contaminated sediments. Joint report no. 1: Acute and (sub)chronic tests with the model compound chlorpyrifos. IMW-R 91/111; RIVM-719102022; RIZA-93.090X. RIVM, Bilthoven

    Google Scholar 

  • Houtman CJ et al (2006) Estrogenic and dioxin-like compounds in sediment from Zierikzee harbour identified with CALUX assay-directed fractionation combined with one and two dimensional gas chromatography analyses. Chemosphere 65:2244–2252. doi:10.1016/j.chemosphere.2006.05.043

    Article  CAS  Google Scholar 

  • Hyde K, Jones EBG, Leaño E, Pointing S, Poonyth A, Vrijmoed LP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161. doi:10.1023/a:1008823515157

    Article  Google Scholar 

  • IPCS (1999) Concise international chemical assessment documents, No. 13, Triphenyltin compounds. World Health Organization, Geneva

    Google Scholar 

  • ISO (2010) ISO/DIS 16191 Water quality—Determination of the toxic effect of sediment and soil on the growth behaviour of Myriophyllum aquaticum. International Organization for Standardization, Geneva

    Google Scholar 

  • Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540. doi:10.1021/es103092a

    Article  CAS  Google Scholar 

  • Jager T, Martin BT, Zimmer EI (2013) DEBkiss or the quest for the simplest generic model of animal life history. J Theor Biol 328:9–18. doi:10.1016/j.jtbi.2013.03.011

    Article  Google Scholar 

  • Janssen EML, Croteau M-N, Luoma SN, Luthy RG (2009) Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment. Environ Sci Technol 44:2857–2863. doi:10.1021/es901632e

    Article  CAS  Google Scholar 

  • Jantunen APK, Tuikka A, Akkanen J, Kukkonen JVK (2008) Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Ecotoxicol Environ Saf 71:860–868. doi:10.1016/j.ecoenv.2008.01.025

    Article  CAS  Google Scholar 

  • Jensen HF, Holmer M, Dahllöf I (2004) Effects of tributyltin (TBT) on the seagrass Ruppia maritima. Mar Pollut Bull 49:564–573

    Article  CAS  Google Scholar 

  • Jha AN (2004) Genotoxicological studies in aquatic organisms: an overview. Mutat Res 552:1–17. doi:10.1016/j.mrfmmm.2004.06.034

    Article  CAS  Google Scholar 

  • Kaag NHBM, Foekema EM, Scholten MCT, van Straalen NM (1997) Comparison of contaminant accumulation in three species of marine invertebrates with different feeding habits. Environ Toxicol Chem 16:837–842. doi:10.1002/etc.5620160501

    Article  CAS  Google Scholar 

  • Karman CC (2000) The role of time in environmental risk assessment. Spill Sci Technol Bull 6:159–164. doi:10.1016/S1353-2561(00)00071-2

    Article  CAS  Google Scholar 

  • Kilmartin J, Cazabon D, Smith P (1996) Investigations of the toxicity of ivermectin for salmonids. B Eur Assoc Fish Pat 17:107–112

    Google Scholar 

  • Koelmans AA, Van der Heijde A, Knijff LM, Aalderink RH (2001) Integrated modelling of eutrophication and organic contaminant fate and effects in aquatic ecosystems. A Review. Water Res 35:3517–3536. doi:10.1016/S0043-1354(01)00095-1

    Article  CAS  Google Scholar 

  • Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TD, Van Noort PCM, Gustafsson Ö (2006) Black carbon: the reverse of its dark side. Chemosphere 63:365–377

    Article  CAS  Google Scholar 

  • Koelmans AA, Kaag K, Sneekes A, Peeters ETHM (2009) Triple domain in situ sorption modeling of organochlorine pesticides, polychlorobiphenyls, polyaromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans in aquatic sediments. Environ Sci Technol 43:8847–8853. doi:10.1021/es9021188

    Article  CAS  Google Scholar 

  • Koelmans AA, Poot A, Lange HJD, Velzeboer I, Harmsen J, van Noort PCM (2010) Estimation of in situ sediment-to-water fluxes of polycyclic aromatic hydrocarbons, polychlorobiphenyls and polybrominated diphenylethers. Environ Sci Technol 44:3014–3020. doi:10.1021/es903938z

    Article  CAS  Google Scholar 

  • Konstantinou I, Albanis T (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248

    Article  CAS  Google Scholar 

  • Krogh KA, Søeborg T, Brodin B, Halling-Sørensen B (2008) Sorption and mobility of ivermectin in different soils. J Environ Qual 37:2202–2211. doi:10.2134/jeq2007.0592

    Article  CAS  Google Scholar 

  • Langston WJ, Pope ND (1995) Determinants of TBT adsorption and desorption in estuarine sediments. Mar Pollut Bull 31:32–43. doi:10.1016/0025-326X(95)91269-M

    Article  CAS  Google Scholar 

  • Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64. doi:10.1016/S1383-5742(03)00017-6

    Article  CAS  Google Scholar 

  • Legler J, Van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66. doi:10.1093/toxsci/48.1.55

    Article  CAS  Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Technol 32:1503–1508. doi:10.1021/es970941k

    Article  Google Scholar 

  • Levin LA et al (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451. doi:10.1007/s10021-001-0021-4

    Article  CAS  Google Scholar 

  • Liebig M et al (2010) Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag 6:567–587. doi:10.1002/ieam.96

    Article  CAS  Google Scholar 

  • Lu X, Reible DD, Fleeger JW (2004) Relative importance of ingested sediment versus pore water as uptake routes for PAHs to the deposit-feeding Oligochaete Ilyodrilus templetoni. Arch Environ Contam Toxicol 47:207–214. doi:10.1007/s00244-004-3053-x

    Article  CAS  Google Scholar 

  • Maltby L (2013) Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors. Environ Toxicol Chem 32:974–983. doi:10.1002/etc.2212

    Article  CAS  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi:10.1897/04-025r.1

    Article  CAS  Google Scholar 

  • Maltby L, Brock TCM, van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ Sci Technol 43:7556–7563. doi:10.1021/es901461c

    Article  CAS  Google Scholar 

  • Marinković M, Verweij RA, Nummerdor GA, Jonker MJ, Kraak MHS, Admiraal W (2011) Life cycle responses of the midge Chironomus riparius to compounds with different modes of action. Environ Sci Technol 45:1645–1651. doi:10.1021/es102904y

    Article  CAS  Google Scholar 

  • Maund S et al (1997) Development and evaluation of triggers for sediment toxicity testing of pesticides with benthic macroinvertebrates. Environ Toxicol Chem 16:2590–2596. doi:10.1002/etc.5620161222

    Article  CAS  Google Scholar 

  • McIntyre A (1969) Ecology of marine meiobenthos. Biol Rev 44:245–288

    Article  Google Scholar 

  • McLeod PB, van den Heuvel-Greve MJ, Luoma SN, Luthy RG (2007) Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environ Toxicol Chem 26:980–987. doi:10.1897/06-278r1.1

    Article  CAS  Google Scholar 

  • McLeod PB, Luoma SN, Luthy RG (2008) Biodynamic modeling of PCB uptake by Macoma balthica and Corbicula fluminea from sediment amended with activated carbon. Environ Sci Technol 42:484–490. doi:10.1021/es070139a

    Article  CAS  Google Scholar 

  • MEA (2005) Ecosystem and human well-being: synthesis. MEA, Washington, DC

    Google Scholar 

  • Meador JP, Rice CA (2001) Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment. Mar Environ Res 51:113–129. doi:10.1016/S0141-1136(00)00033-7

    Article  CAS  Google Scholar 

  • Meador JP, Krone CA, Dyer DW, Varanasi U (1997) Toxicity of sediment-associated tributyltin to infaunal invertebrates: species comparison and the role of organic carbon. Mar Environ Res 43:219–241. doi:10.1016/0141-1136(96)00090-6

    Article  CAS  Google Scholar 

  • Menone ML, Miglioranza KSB, Iribarne O, Aizpún de Moreno JE, Moreno VJ (2004) The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping organochlorine pesticides. Mar Pollut Bull 48:240–247. doi:10.1016/S0025-326X(03)00394-1

    Article  CAS  Google Scholar 

  • Moermond CT, Zwolsman JJ, Koelmans AA (2005) Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes. Environ Sci Technol 39:3101–3109

    Article  CAS  Google Scholar 

  • Morrison HA, Gobas FAPC, Lazar R, Haffner GD (1996) Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ Sci Technol 30:3377–3384. doi:10.1021/es960280b

    Article  CAS  Google Scholar 

  • Mulligan CN, Fukue M, Sato Y (2009) Sediments contamination and sustainable remediation. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Murk AJ, Legler J, Denison MS, Giesy JP, van de Guchte C, Brouwer A (1996) Chemical-Activated Luciferase Gene Expression (CALUX): a novel in vitro bioassay for Ah receptor active compounds in sediments and pore water. Fundam Appl Toxicol 33:149–160. doi:10.1006/faat.1996.0152

    Article  CAS  Google Scholar 

  • Nealson KH (1997) Sediment bacteria: who’s there, What are they doing, and What’s new? Annu Rev Earth Planet Sci 25:403–434. doi:10.1146/annurev.earth.25.1.403

    Article  CAS  Google Scholar 

  • Nendza M (2002) Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48:865–883

    Article  CAS  Google Scholar 

  • Nguyen TH, Goss K-U, Ball WP (2005) Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol 39:913–924. doi:10.1021/es048839s

    Article  CAS  Google Scholar 

  • Nienstedt KM et al (2012) Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Sci Total Environ 415:31–38

    Article  CAS  Google Scholar 

  • OECD (2000a) Test No. 106: Adsorption -- desorption using a batch equilibrium method. OECD, Paris

    Book  Google Scholar 

  • OECD (2000b) Test No. 216: Soil microorganisms: nitrogen transformation test. OECD, Paris

    Google Scholar 

  • OECD (2002) Test No. 308: Aerobic and anaerobic transformation in aquatic sediment systems. OECD, Paris

    Google Scholar 

  • OECD (2004a) Test No. 218: Sediment-water Chironomid toxicity using spiked sediment. OECD, Paris

    Google Scholar 

  • OECD (2004b) Test No. 219: Sediment-water Chironomid toxicity using spiked water. OECD, Paris

    Google Scholar 

  • OECD (2007) Test No. 225: Sediment-water Lumbriculus toxicity test using spiked sediment. OECD, Paris

    Book  Google Scholar 

  • OECD (2010) Test No. 233: Sediment-water Chironomid life-cycle toxicity test using spiked water or spiked sediment. OECD, Paris

    Book  Google Scholar 

  • OECD (2014) Accepted OECD test guideline for water-sediment Myriophyllum spicatum toxicity test (Myrio 2-Phase), April 2014. OECD, Paris, http://www.oecd.org/env/ehs/testing/section2effectsonbioticsystems.htm

    Google Scholar 

  • Palmer MA et al (2000) Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 50:1062–1075. doi:10.1641/0006-3568(2000)050[1062:lbasba]2.0.co;2

    Article  Google Scholar 

  • Park RA, Clough JS, Wellman MC (2008) AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems. Ecol Model 213:1–15. doi:10.1016/j.ecolmodel.2008.01.015

    Article  CAS  Google Scholar 

  • Pastorok RA, Akçakaya R, Regan H, Ferson S, Bartell SM (2003) Role of ecological modeling in risk assessment. Hum Ecol Risk Assess 9:939–972. doi:10.1080/713610017

    Article  Google Scholar 

  • Pistocchi A, Sarigiannis DA, Vizcaino P (2010) Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. Sci Total Environ 408:3817–3830. doi:10.1016/j.scitotenv.2009.10.046

    Article  CAS  Google Scholar 

  • Poot A, Jonker MTO, Gillissen F, Koelmans AA (2014) Explaining PAH desorption from sediments using Rock Eval analysis. Environ Pollut 193:247–253. doi:10.1016/j.envpol.2014.06.041

    Article  CAS  Google Scholar 

  • Posthuma L, Suter GWI, Traas TP (2002) Species-sensitivity distributions in ecotoxicology. CRC Press, Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Posthuma L, Eijsackers HJP, Koelmans AA, Vijver MG (2008) Ecological effects of diffuse mixed pollution are site-specific and require higher-tier risk assessment to improve site management decisions: a discussion paper. Sci Total Environ 406:503–517

    Article  Google Scholar 

  • Redman AD, Parkerton TF, Paumen ML, McGrath JA, den Haan K, Di Toro DM (2014) Extension and validation of the target lipid model for deriving predicted no-effect concentrations for soils and sediments. Environ Toxicol Chem 33:2679–2687. doi:10.1002/etc.2737

    Article  CAS  Google Scholar 

  • Rico A, Van den Brink PJ (2015) Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environ Toxicol Chem 34:1907–1917. doi:10.1002/etc.3008

    Article  CAS  Google Scholar 

  • Rico A et al (2014) Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ Pollut 191:8–16. doi:10.1016/j.envpol.2014.04.002

    Article  CAS  Google Scholar 

  • Rico A, Van den Brink PJ, Gylstra R, Focks A, Brock TCM (2015 online). Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integrated Environmental Assessment and Management doi: 10.1002/ieam.1718

    Article  CAS  Google Scholar 

  • Rubach MN et al (2011) Framework for traits-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186. doi:10.1002/ieam.105

    Article  Google Scholar 

  • Rykiel EJ Jr (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244. doi:10.1016/0304-3800(95)00152-2

    Article  Google Scholar 

  • Sanco (2002) Working document: guidance document on aquatic ecotoxicology, vol rev. 4 (Final). European Commission, Health and Consumer Protection Directorate General, Ispra

    Google Scholar 

  • Sanderson H et al (2007) Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquat Toxicol 85:229–240. doi:10.1016/j.aquatox.2007.08.011

    Article  CAS  Google Scholar 

  • Scheffer M, Beets J (1994) Ecological models and the pitfalls of causality. In: Mortensen E, Jeppesen E, Søndergaard M, Nielsen LK (eds) Nutrient dynamics and biological structure in shallow freshwater and brackish lakes, vol 94, Developments in hydrobiology. Springer, Amsterdam, pp 115–124. doi:10.1007/978-94-017-2460-9_10

    Chapter  Google Scholar 

  • Schmolke A, Thorbek P, Chapman P, Grimm V (2010) Ecological models and pesticide risk assessment: current modeling practice. Environ Toxicol Chem 29:1006–1012. doi:10.1002/etc.120

    Article  CAS  Google Scholar 

  • Selck H et al (2012) Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach. Integr Environ Assess Manag 8:42–63. doi:10.1002/ieam.217

    Article  CAS  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818. doi:10.1046/j.1351-0754.2003.0564.x

    Article  CAS  Google Scholar 

  • Seth R, Mackay D, Muncke J (1999) Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environ Sci Technol 33:2390–2394. doi:10.1021/es980893j

    Article  CAS  Google Scholar 

  • Sidney LA, Diepens NJ, Guo X, Koelmans AA (in prep) Trait-based modelling of bioaccumulation by freshwater benthic invertebrates

    Google Scholar 

  • Smit MGD, Kater BJ, Jak RG, van den Heuvel-Greve MJ (2006) Translating bioassay results to field population responses using a Leslie-matrix model for the marine amphipod Corophium volutator. Ecol Model 196:515–526

    Article  CAS  Google Scholar 

  • Solomon KR et al (2008) Extrapolation practice for ecological effect and exposure characterization of chemicals. Society of Environmental and Chemistry (SETAC) & CRC Press, Boca Raton, FL

    Google Scholar 

  • Stronkhorst J, van Hattum B, Bowmer T (1999) Bioaccumulation and toxicity of tributyltin to a burrowing heart urchin and an amphipod in spiked, silty marine sediments. Environ Toxicol Chem 18:2343–2351. doi:10.1002/etc.5620181031

    Article  CAS  Google Scholar 

  • Telfer T, Baird D, McHenery J, Stone J, Sutherland I, Wislocki P (2006) Environmental effects of the anti-sea lice (Copepoda: Caligidae) therapeutant emamectin benzoate under commercial use conditions in the marine environment. Aquaculture 260:163–180

    Article  CAS  Google Scholar 

  • Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm Arenicola marina. Aquaculture 159:47–52. doi:10.1016/S0044-8486(97)00210-X

    Article  CAS  Google Scholar 

  • Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11:615–629. doi:10.1002/etc.5620110505

    Article  CAS  Google Scholar 

  • Thomann RV, Mahony JD, Mueller R (1995) Steady state model of biota sediment accumulation factor for metals in 2 marine bivalves. Environ Toxicol Chem 14:1989–1998. doi:10.1897/1552-8618(1995)14[1989:smobsa]2.0.co;2

    Article  CAS  Google Scholar 

  • Van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34:455–499

    Article  Google Scholar 

  • van Beusekom OC, Eljarrat E, Barceló D, Koelmans AA (2006) Dynamic modeling of food-chain accumulation of brominated flame retardants in fish from the Ebro River Basin, Spain. Environ Toxicol Chem 25:2553–2560. doi:10.1897/05-409r.1

    Article  Google Scholar 

  • Van den Brink PJ, Baveco JM, Verboom J, Heimbach F (2007) An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination. Environ Toxicol Chem 26:2226–2236. doi:10.1897/07-022r.1

    Article  Google Scholar 

  • Van der Ploeg MJC, Baveco JM, Van der Hout A, Bakker R, Rietjens IMCM, Van den Brink NW (2011) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159:198–203. doi:10.1016/j.envpol.2010.09.003

    Article  CAS  Google Scholar 

  • van Noort PCM, Koelmans AA (2012) Nonequilibrium of organic compounds in sediment–water systems. Consequences for risk assessment and remediation measures. Environ Sci Technol 46:10900–10908. doi:10.1021/es300630t

    Article  CAS  Google Scholar 

  • Van Vlaardingen P, Traas TP, Aldenberg T (2004) ETX2.0 Normal distribution based hazardous concentration and fraction affected. RVIM, Bilthoven

    Google Scholar 

  • van Wijngaarden RPA, Maltby L, Brock TCM (2015) Acute tier-1 and tier-2 effect assessment approaches in the EFSA Aquatic Guidance Document: are they sufficiently protective for insecticides? Pest Manag Sci 71:1059–1067. doi:10.1002/ps.3937

    Article  CAS  Google Scholar 

  • Vanier C, Planas D, Sylvestre M (2001) Equilibrium partition theory applied to PCBs in macrophytes. Environ Sci Technol 35:4830–4833. doi:10.1021/es001519y

    Article  CAS  Google Scholar 

  • Vermeire TG et al (1997) European Union System for the Evaluation of Substances (EUSES). Principles and structure. Chemosphere 34:1823–1836. doi:10.1016/S0045-6535(97)00017-9

    Article  CAS  Google Scholar 

  • VICH (2004) Environmental impact assessment for veterinary medicinal products—phase II. International cooperation on harmonisation of technical requirements for registration of veterinary products. VICH, London

    Google Scholar 

  • Wall DH (2004) Sustaining biodiversity and ecosystem services in soils and sediments. Island Press, Washington, DC

    Google Scholar 

  • Wall DF, Blackburn TH, Brussaard L, Hutchings P, Palmer MA, Snelgrove PV (1997) Linking biodiversity and ecosystem functioning of soils and sediments. Ambio 26:556–562

    Google Scholar 

  • Weisbrod AV, Woodburn KB, Koelmans AA, Parkerton TF, McElroy AE, Borgå K (2009) Evaluation of bioaccumulation using in vivo laboratory and field studies. Integr Environ Assess Manag 5:598–623. doi:10.1897/ieam_2009-004.1

    Article  CAS  Google Scholar 

  • Weston DP, You J, Harwood AD, Lydy MJ (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III. Temperature manipulation. Environ Toxicol Chem 28:173–180. doi:10.1897/08-143.1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by CEFIC, the Long Range Research Initiative (LRI). We would like to thank all workshop participants (see full name list in Appendix 1) for their participation in the discussions during the workshop Prospective Sediment Risk Assessment held on 24-02-14 in Wageningen. We want to thank Gertie Arts for taking the minutes during the workshop and Mick Hamer, Stuart Marshall, and Paul Thomas for their comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël J. Diepens .

Editor information

Editors and Affiliations

Appendices

Appendix 1: List of Workshop Participants

The workshop “Prospective Sediment Risk Assessment” was held on 24-02-14 in Wageningen, the Netherlands

Name

Surname

Affiliation

Country

Gertie

Arts

Alterra Wageningen UR

The Netherlands

Hans

Baveco

Alterra Wageningen UR

The Netherlands

Theo

Brock

Alterra Wageningen UR

The Netherlands

Eric

Bruns

Bayer

Germany

Noël

Diepens

Wageningen University

The Netherlands

Andreas

Focks

Alterra Wageningen UR

The Netherlands

Malyka

Galay-Burgos

Ecetoc

Belgium

Mick

Hamer

Syngenta

United Kingdom

Bruno

Hubesch

CEFIC

Belgium

Bart

Koelmans

Wageningen University

The Netherlands

Stuart

Marshall

Unilever

United Kingdom

Andreu

Rico

Wageningen University

The Netherlands

Mauricio

Rocha Dimitrov

Wageningen University

The Netherlands

Cor

Schipper

Deltares

The Netherlands

Livia

Sidney

Wageningen University

The Netherlands

Hauke

Smidt

Wageningen University

The Netherlands

Ariadna

Szczybelski

Wageningen University

The Netherlands

Paul

Van den Brink

Alterra Wageningen UR/Wageningen University

The Netherlands

Martine

Van den Heuvel-Greve

IMARES Wageningen UR

The Netherlands

Bert

Van Hattum

VU University Amsterdam

The Netherlands

Erik

Verbruggen

RIVM

The Netherlands

Arjan

Wijdeveld

TU Delft

The Netherlands

Appendix 2: List of Abbreviations

AF

Assessment factor

ASTM

American Society for Testing and Materials

BSAF

Biota sediment accumulation factor

Cpw

Concentration of the chemical in pore water

Csed;oc

Concentration of the chemical in the sediment per unit mass of organic carbon

ECHA

European Chemicals Agency

ECx

Effect concentration x percent

EF

Extrapolation factor

EFSA

European Food Safety Authority

EMEA

European Medicines Agency

EP

Equilibrium partitioning

EPA

United States Environmental Protection Agency

ERA

Environmental risk assessment

ERC

Ecotoxicologically relevant concentration

GIS

Geographic information system

HC5

Hazardous concentrations to 5 % of the test species

IBM

Individual-based modelling

ISO

International Organization for Standardization

Kd

Sediment-water partitioning coefficient

Koc

Organic carbon-water partitioning coefficient

Kow

Octanol-water partition coefficient

LCX

Lethal concentration x percent

NOEC

No effect concentration

OC

Organic carbon

OECD

Organisation for Economic Co-operation and Development

PEC

Predicted environmental exposure concentrations

PECsed

Sediment exposure estimates

PECsed;max

Sediment exposure estimates based on peak concentration

PECsed;TWA

Sediment exposure estimates based on time-weighted average concentration

PNEC

Predicted no effect concentration

PNECsed

Effect estimates for sediment-dwelling organisms

PNECsed;ch

Predicted no effect concentration for sediment based on chronic toxicity data

PNECsed;ch;EP

Predicted no effect concentration for sediment based on chronic toxicity data calculated by equilibrium partitioning

PNECsw;ch

Predicted no effect concentration for surface water based on chronic toxicity data

PPP

Plant Protection Products

QSAR

Quantitative Structure Activity Relationship

QSPR

Quantitative Structure Property Relationship

REACH

Registration, Evaluation, Authorisation and Restriction of Chemicals

RQ

Risk Quotient (RQ = PEC/PNEC)

SPU

Service providing units

SSD

Species sensitivity distribution

TKTD

Toxicokinetic toxicodynamic

TWA

Time-weighted average

VICH

Veterinary International Conference on Harmonization

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Diepens, N.J., Koelmans, A.A., Baveco, H., van den Brink, P.J., van den Heuvel-Greve, M.J., Brock, T.C.M. (2016). Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 239. Reviews of Environmental Contamination and Toxicology, vol 239. Springer, Cham. https://doi.org/10.1007/398_2015_5004

Download citation

Publish with us

Policies and ethics